Привет, посетитель сайта ZametkiNaPolyah.ru! Продолжаем изучать основы работы компьютерных сетей, в этой теме я предлагаю разобраться со структурой IP-адреса и откуда вообще берутся какие-то номера сети и номера узлов, ведь IP-адрес с виду цельная и неделимая сущность. Также в этой записи мы коротко поговорим о маске подсети и зачем она нужна, увидим, что когда-то было всё плохо и сети были классовыми, а сейчас всё стало хорошо благодаря CIDR и VLSM и сети стали бесклассовые и в завершении посмотрим на формы записи IP-адресов в протоколе IPv4.
Если тема компьютерных сетей вам интересна, то можете ознакомиться с другими записями курса.
Оглавление первой части: «Основы взаимодействия в компьютерных сетях».
Оглавление четвертой части: «Сетевой уровень: протокол IP и его версия IPv4».
4.2.1 Введение
Содержание статьи:
- 4.2.1 Введение
- 4.2.2 Структура IP-адреса и маска подсети
- 4.2.3 Классовые сети
- 4.2.4 Бесклассовые сети (CIDR) и маска подсети переменной длины (VLSM)
- 4.2.5 Форма записи IP-адреса и сокращения
- 4.2.6 Выводы
Структура IP-адреса — это одна из самых важных тем для понимания принципов работы протокола IP, эта тема очень тесно связана с маршрутизацией, механизмом работы классовых сетей и механизмом маски подсети переменной длинны, если вы не разберетесь со структурой IP-адреса, вы, конечно, не будете испытывать проблем с тем, чтобы настроить на своем ПК доступ в Интернет, но у вас не будет понимания принципов работы IP сетей. Надеюсь, я вас убедил в том, что тема важная, хоть и небольшая.
4.2.2 Структура IP-адреса и маска подсети
В протоколе IP есть две очень важные вещи, которые сделали его вездесущим. Первое – это заголовок IP-пакета, который определяет функционал протокола, а второе – это IP-адрес, который, следует заметить, является частью заголовка, но о нем стоит поговорить отдельно, чем мы сейчас и займемся. Я более чем уверен, что вы уже видели IP-адреса и более того, работали с ними, но если нет, то вот вам пример: 192.168.1.0. Для человека IP-адреса в протоколе IPv4 чаще всего представлены вот в таком виде.
Тут ничего сложного нет. Для нас IP-адрес разбит на четыре кусочка, разделителем между кусочками служат точки, каждый такой кусочек представляет собой один байт или один октет, следовательно, максимально возможное число, которое можно записать равно 255, а минимальное число ноль. Получается, что чисто теоретически можно использовать адреса от 0.0.0.0 до 255.255.255.255. Правда часть из этих адресов зарезервирована под специальные нужды, это мы обсудим в отдельной теме. Сейчас же будем считать, что нам доступно два в тридцать второй степени IP-адресов или 4 294 967 296, которых уже катастрофически не хватает, поэтому происходить плавное внедрение протокола IPv6.
На самом деле IP-адрес – это не просто четыре числа, разделенных точками, а более интересная и сложная сущность. Во-первых, следует заметить, что маршрутизаторы не знают десятичной системы счисления, так же, как и абонентские узлы, для них IP-адрес представлен набором нулей и единиц в нашем случае (192.168.1.0), IP-адрес для машины выглядит как-то так: 11000000 (192) 10101000 (168) 00000001 (1) 00000000 (0). Октеты в данном случае я разделил пробелами, думаю, тут всё очевидно: каждый байт – это восемь двоичных значений (0 или 1), а всего у нас для IP-адреса выделено четыре байта, то есть 32 бита, отсюда вытекает и два в тридцать второй степени IP-адресов.
Я сразу оговорился, что IP-адрес более сложная штука, чем кажется на первый взгляд. Дело всё в том, что IP-адрес включает в себя два параметра, которые позволяют идентифицировать узел в глобальной сети: номер узла и номер сети. Вообще, протокол IP предусматривает два механизма разбиения IP-адреса на номер сети и номер узла. Первый механизм называется классовая адресация, а второй механизм называется CIDR (Classless Inter-Domain Routing) или бесклассовая адресация. В этой теме мы сделаем поверхностный обзор этих механизмов, а в дальнейшем разберемся с ними детально.
Сейчас же сделаем небольшое отступление и поговорим про байты и биты, а если быть более точным, то про порядок нумерации байтов и битов в байте. Для примера возьмем IP-адрес 192.168.1.0 и запишем его в двоичном виде.
Рисунок 4.2.1 Номера октетов и битов в IP-адресе
В таблице показана нумерация октетов и бит в октетах так, как это реализуется в сетях модели TCP/IP. Эта нумерация справедлива как для IP-адреса в отдельности, так для всего заголовка IP-пакета. Крайний левый байт или самый первый байт называется старшим и его порядковый номер ноль, последний байт — младший и его порядковый номер три. То же самое относится и к битам: самый старший бит имеет порядковый номер ноль, а самый младший бит в байте имеет порядковый номер семь. Такая нумерация называется от старшего к младшему или big-endian, иногда такой порядок называется сетевым порядком.
Кстати, если у вас процессор интеловской архитектуры, то он нумерует байты и биты в обратном порядке, то есть от младшего к старшему, big-endian или интеловский порядок нумерации. Есть еще смешанный порядок и переключаемый порядок, но это нам уже не очень интересно. Почему в компьютерных сетях используется прямой порядок? Да очень просто, дело в том, что в таком порядке числа удобнее сравнивать, а сетевые устройства в основном только и делают, что сравнивают то, что им пришло в пакетах с тем, что записано в их конфигурациях или памяти.
4.2.3 Классовые сети
Классовые сети были единственным способом разделить пространство IP-адресов между всеми желающими до 1993 года, то есть с 1981 по 1993 год, в 1993 году появился механизмы VLSM и CIDR, которые сделали процесс деления более гибким, из этого можно сделать вывод, что в начале девяностых уже появились первые проблемы с нехваткой IP-адресов в протоколе IPv4.
Классовая адресация, как ясно из названия, делит всё пространство IP-адресов на классы, всего этих классов пять: A, B, C, D, E. Как понять к какому классу принадлежит IP-адрес? Да очень просто! Посмотреть на его первые биты. Приведу небольшой список, чтобы было понятно, к какому классу какой IP-адрес относится:
- сети класса А определяются значением первого бита, если первый бит IP-адреса нулевой, то это означает, что он относится к сети класса А, во всех остальных случаях – это другой класс;
- сети класса B определяются по значениям первых двух бит IP-адреса, IP-адрес относится к сети класса B в том случае, если первый бит имеет значение 1, а второй 0;
- IP-адрес будет принадлежать к сети класса C, если первый бит адреса будет равен 1, второй бит тоже 1, а третий будет 0;
- сети класса D определяются по первым четырем битам IP-адреса, при этом первый бит 1, второй бит 1, третий бит 1, а четвертый 0, стоит добавить, что сети класса D использовались для многоадресной рассылки или иначе multicast;
- и наконец сети класса E были зарезервированы и их нельзя было использовать простым смертным, определялись они первыми четырьмя битами, каждый из которых должен был иметь значение 1.
Для ясности давайте посмотрим на примере IP-адресов для каждого класса:
- Сеть класса А. IP-адрес в десятичном виде: 10.10.0.1. IP-адрес в двоичном виде: 00001010 00001010 00000000 00000001. Обратите внимание на то, что первый бит равен нулю, он как раз и определяет, что данный IP-адрес принадлежит к сети класса A.
- Сеть класса B. IP-адрес в десятичном виде: 130.25.25.12. IP-адрес в двоичном виде: 1000 0010 00011001 00011001 000011000. Принадлежность к данному классу определяют первых два бита: 10.
- Сеть класса C. IP-адрес в десятичном виде: 192.168.1.0. IP-адрес в двоичном виде: 11000000 10101000 00000001 00000000. Значение первых трех бит определяют принадлежность этого адреса к классу C.
- Сеть класса D. IP-адрес в десятичном виде: 224.0.0.6. IP-адрес в двоичном виде: 11100000 00000000 00000000 00000110. Значение первых четырех бит выделены жирным.
- Сеть класса E. IP-адрес в десятичном виде: 240.10.10.10. IP-адрес в двоичном виде: 11110000 00001010 00001010 00001010.
С классами сетей всё ясно и понятно, остается нераскрытым вопрос: как понять из какой подсети тот или иной IP-адрес, но об этом мы поговорим в теме про классовые сети, сейчас же только отмечу, что принадлежность IP-адреса к той или иной подсети определяется значением некоторых бит в самом IP-адресе и фиксированной маской, которая в любом случае будет сопровождать этот адрес.
4.2.4 Бесклассовые сети (CIDR) и маска подсети переменной длины (VLSM)
Бесклассовая адресация или CIDR – это механизм разделения сети на подсети в современных сетях передачи данных, этот механизм позволил существенно экономить адреса и не тратить лишнего. CIDR тесно связан с понятием VLSM (variable length subnet mask) или маска подсети переменной длинны, можно просто маска подсети или маска, на данный момент вас поймут верно. Становится понятно, что здесь уже нет жестких рамок классов, поскольку и самих классов нет. Теперь для того чтобы понять к какой подсети относится IP-адрес, самого IP-адреса недостаточно, нужна еще и маска подсети, которая, следует сказать, не передается по сети, она указывается только на конечных узлах и маршрутизаторах (а, например, L2 коммутаторы и хабы вообще ничего не знают про IP-адреса, первые работают на канальном уровне, а вторые реализуют механизмы физического уровня модели OSI 7, про разницу между хабами, коммутаторами и роутерами читайте здесь), и для нее нет отдельного поля в IP-пакете.
Как выглядит маска подсети? Да на самом деле, как IP-адрес, вот несколько примеров маски: 255.255.255.0, 255.255.254.0, 255.248.0.0. Заметили, здесь общего? Ну, кроме того, что во всех примерах первый октет 255. Общая составляющая будет заметна, если написать все эти маски в двоичном виде:
- 255.255.255.0: 11111111 11111111 11111111 00000000;
- 255.255.254.0: 11111111 11111111 11111110 00000000;
- 255.248.0.0: 11111111 11111000 00000000 00000000.
Обратите внимание: у каждой маски вначале идут только единицы, затем идут только нули, чередоваться нули и единицы в маске подсети не могут. Например, не может быть вот такой маски: 255.254.255.0 или в двоичной системе: 11111111 11111110 11111111 00000000. И это очень важно, поскольку именно на границе нулей и единиц маски подсети находится граница между номером сети и номером узла в IP-адресе.
На примере будет все немного яснее, давайте возьмем следующий IP-адрес и маску: 192.168.1.25/24, иначе это можно было бы записать так: 192.168.1.25 с маской 255.255.255.0, число 24 означает количество единиц в маске. Если вам просто дать этот IP-адрес без маски, то вы не сможете сказать: какие биты этого IP-адреса отданы под номер сети, а какие под номер узла, с маской же все становится понятно. Чтобы понять где здесь номер сети, а где номер узла, нужно перевести и маску, и IP-адрес в двоичную систему счисления. Давайте сделаем всё это в виде таблицы.
Рисунок 4.2.2 Переводим IP-адрес и маску подсети в двоичный вид
Сразу отметим, что те биты IP-адреса, напротив которых в маске подсети стоят единицы, будут относиться к номеру сети, а те биты адреса, напротив которых у маски нули, относятся к номеру хоста. Чтобы узнать номер узла и номер сети нужно выполнить операцию «логическое И» между соответствующими битами IP-адреса и маски. Операция «логическое И» в двоичной системе счисления эквивалентна операции умножения в десятичной: 1×1=1, 1×0=0, 0×0=0. Вы уже понимаете, что номер сети в IP-адресе при использовании CIDR и VLSM определяется маской, а именно единичными битами маски, то есть для нашего случая номер сети это: 192.168.1.0, а под номера узлов у нас остается диапазон с 192.168.1.1 по 192.168.1.254, заметьте, что есть еще 192.168.1.255 — это широковещательный IP-адрес для данной сети и его нельзя назначить узлу или интерфейсу маршрутизатора.
Мы рассмотрели простой пример использования маски подсети, в данном случае граница между номером сети и номером узла в IP-адресе проходит по границе предпоследнего октета, но не всегда бывает так, например, маска 255.248.0.0 проводит границу между номером сети и номером узла посередине октета, но о таких случаях мы поговорим в отдельной теме, посвященной бесклассовой адресации (CIDR) и механизму маски подсети (VLSM).
4.2.5 Форма записи IP-адреса и сокращения
Теперь вас стоит немного удивить и сказать, что ни один официальный документ, посвященный IP протоколу, не говорит нам о том, как правильно записывать IP-адрес в документах, на бумаге или в конфигурациях того или иного устройства. На самом деле IP-адрес — это число, которое можно записать в любой системе счисления, хоть в восьмеричной.
Форма записи октетов, разделенных точками, просто удобна для человека: 127.0.0.1. Но для машины IP-адрес число, которое может находиться в диапазоне от 00000000 00000000 00000000 00000000 до 11111111 11111111 11111111 11111111 или в десятичной системе счисления: от 0 до 4 294 967 295. И вы понимаете, что IP-адрес 127.0.0.1 — это не число 127001, это вот такое число 01111111 00000000 00000000 00000001 или в десятичной системе: 2 130 706 433. Более того, если вы запустите командую строку или эмулятор терминала в своей операционной системе, то сможете пропинговать IP-адрес 127.0.0.1, используя число выше, если не верите, то смотрите листинг ниже.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | Microsoft Windows [Version 10.0.17134.228] (c) Корпорация Майкрософт (Microsoft Corporation), 2018. Все права защищены. C:UsersDell>ping 2130706433 Обмен пакетами с 127.0.0.1 по с 32 байтами данных: Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128 Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128 Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128 Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128 Статистика Ping для 127.0.0.1: Пакетов: отправлено = 4, получено = 4, потеряно = 0 (0% потерь) Приблизительное время приема—передачи в мс: Минимальное = 0мсек, Максимальное = 0 мсек, Среднее = 0 мсек C:UsersDell> |
Эстетами или проще говоря тем, кому хочется понтанутся, было придумано еще два способа записи IP-адресов в десятичном виде, эти способы идут к нам из стека BSD и функции inet_aton (). Первый способ записи выглядит так: 8bit.24bit. Вот так будет выглядеть IP-адрес в 127.0.0.1: 127.1, в двоичном виде он будет выглядеть так: 01111111.000000000000000000000001. То есть под первое число выделено 8 бит, а под второе 24. Windows вполне себе понимает такую форму записи.
C:UsersDell>ping 127.1 Обмен пакетами с 127.0.0.1 по с 32 байтами данных: Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128 Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128 Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128 Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128 Статистика Ping для 127.0.0.1: Пакетов: отправлено = 4, получено = 4, потеряно = 0 (0% потерь) Приблизительное время приема—передачи в мс: Минимальное = 0мсек, Максимальное = 0 мсек, Среднее = 0 мсек |
Чтобы было понятнее, приведу еще один пример: 127.267894, чтобы понять, что это за IP, вам нужно будет перевести его в двоичный вид, разбить на октеты и восстановить его в том виде, к которому мы привыкли или просто попробовать пропинговать адрес:
C:UsersDell>ping 127.267894 Обмен пакетами с 127.4.22.118 по с 32 байтами данных: Ответ от 127.4.22.118: число байт=32 время<1мс TTL=128 Ответ от 127.4.22.118: число байт=32 время<1мс TTL=128 Ответ от 127.4.22.118: число байт=32 время<1мс TTL=128 Ответ от 127.4.22.118: число байт=32 время<1мс TTL=128 Статистика Ping для 127.4.22.118: Пакетов: отправлено = 4, получено = 4, потеряно = 0 (0% потерь) Приблизительное время приема—передачи в мс: Минимальное = 0мсек, Максимальное = 0 мсек, Среднее = 0 мсек |
Вторая сокращенная форма записи IP-адреса выглядит так: 8bit.8bit.16bit. Адрес 127.0.0.1 в этой форме можно записать так: 127.0.1. Винда понимает и эту форму:
C:UsersDell>ping 127.0.1 Обмен пакетами с 127.0.0.1 по с 32 байтами данных: Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128 Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128 Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128 Ответ от 127.0.0.1: число байт=32 время<1мс TTL=128 Статистика Ping для 127.0.0.1: Пакетов: отправлено = 4, получено = 4, потеряно = 0 (0% потерь) Приблизительное время приема—передачи в мс: Минимальное = 0мсек, Максимальное = 0 мсек, Среднее = 0 мсек |
Для примера давайте пропингуем адрес 127.99.259, чтобы посмотреть как происходит преобразование:
C:UsersDell>ping 127.99.259 Обмен пакетами с 127.99.1.3 по с 32 байтами данных: Ответ от 127.99.1.3: число байт=32 время<1мс TTL=128 Ответ от 127.99.1.3: число байт=32 время<1мс TTL=128 Ответ от 127.99.1.3: число байт=32 время<1мс TTL=128 Ответ от 127.99.1.3: число байт=32 время<1мс TTL=128 Статистика Ping для 127.99.1.3: Пакетов: отправлено = 4, получено = 4, потеряно = 0 (0% потерь) Приблизительное время приема—передачи в мс: Минимальное = 0мсек, Максимальное = 0 мсек, Среднее = 0 мсек |
Нормальный человек никогда не будет вам рекомендовать использовать для записи IP-адреса обычные числа или формы 8bit.24bit, 8bit.8bit.16bit. Дело в том, что эти формы записи IP-адресов настолько непривычны, что не всем удобно и понятно с ними работать, вас могут просто банально не понять, если вместо IP-адреса вы напишите огромное число или сокращенную форму записи. Второй момент заключается в том, что не всё оборудование и не каждая программа сможет работать с такими формами записи IP-адресов, нет никакой гарантии того, что разработчик софта вообще знал о том, что такие формы допустимы в протоколе IP.
4.2.6 Выводы
Итак, какие выводы можно сделать по IP-адресам в протоколе IPv4 и их структуре? IP-адрес состоит из двух частей: номера сети и номера узла. Для отделения мух от котлет у нас есть два механизма: классовая адресация, которая уже не используется из-за неэкономного расходования ограниченного ресурса IP-адресов, а также механизмы VLSM и CIDR, которые позволяют очень гибко делить сети на подсети. Оба этих механизма мы рассмотрим более подробно, сейчас же был просто поверхностный взгляд.
Также стоит сказать, что IP-адреса узлам назначаются администратором вручную или при помощи DHCP-сервера, который настраивает администратор. Если же у вас сеть разделена на подсети, то у каждой подсети должен быть уникальный номер, а еще внутри подсети каждый узел должен иметь уникальный номер.
Нужно сказать еще и о том, что очень часто вместе с IP-адресом узла, нам нужно будет использовать IP-адрес шлюза и маску сети, обе эти настройки никак не передаются по сети, поскольку для них нет поля в заголовке IP-пакета. В заголовке есть только IP-адрес источника и IP-адрес назначения, этой информации хватает маршрутизатору для того, чтобы выбрать направление, по которому будет направлен пакет.
11 августа 2021
28 377
1
Время чтения ≈ 15 минут
Содержание:
- Что такое IP-адрес
- Структура IP-адреса
- TCP/IP
- Сетевое расположение IP-адресов
- Присвоение IP-адресов
- Версии IP
- DNS
- Как узнать IP-адрес
- Анонимность и безопасность
- Способы защиты IP-адреса
- Как изменить IP-адрес
- Заключение
В мире доминируют сети с IP-адресацией, самая крупная из которых – Интернет. Устройства, начиная от bluetooth-гаджетов и заканчивая компьютерами, имеют собственный IP-адрес, который служит определяющей меткой в сетевом пространстве.
Понимание того, как работает IP-адрес, является основой системного администрирования. Это базовые знания, которые нужны в реальном мире для простейшей конфигурации сетей как в домашней, так и корпоративной среде.
В этой статье расскажем простыми словами, что такое IP-адрес, какова его структура и предназначение, а также — как посмотреть IP-адрес несколькими способами. Затронем тему безопасности в IP-сетях, приведём примеры основных угроз и способы защиты от них.
IP-адрес (IP от англ. Internet Protocol) — цифровой идентификатор, присваиваемый устройству, которое работает в условиях публичной или локальной сети на основе стека протоколов TCP/IP. Без него невозможно существование Интернета или какой-либо внутренней IP-сети.
Сравнить IP-адрес можно с номером телефона или адресом дома – и тот, и тот указывают на объект. Как человек звонит собеседнику по номеру, так и компьютер обращается к другому устройству по IP-адресу.
Структура IP-адреса
Разберём структуру IP-адреса на примере самого первого и распространённого интернет-протокола IPv4.
IP-адрес IPv4 имеет 32-битную (4 байта) структуру. Он разделён на 4 части, каждая из которых состоит из 8 бит (1 байт) и называется октетом. Каждый бит IP-адреса – цифра двоичной системы.
Пример адреса (IPv4) в двоичном виде: 11000000.10101000.00110010.00000001.
При преобразовании октета с двоичной системы в десятеричную получается одно число со значением от 0 до 255.
IP-адрес в десятичном виде: 192.168.50.1.
Маска подсети
Устройства различают части IP-адреса при помощи маски подсети – 32-битной строки, разделённой на 4 октета, как и IP-адрес. При установке соединения каждый октет IP-адреса сопоставляется с октетом маски подсети.
По умолчанию в стандартной домашней сети маска подсети имеет вид: 255.255.255.0.
В примере маска IP-адреса указана в десятичном представлении и содержит числа «255» и «0». Первое отвечает за идентификацию сети, а второе за обозначение конечного узла.
Классы IP-адресов
- Класс A. Старший бит в адресах такого формата всегда равен 0. За идентификацию сети отвечает начальный октет, позволяющий разместить 127 уникальных сетей. Оставшиеся 3 октета используются для обозначения узлов, максимальное количество которых составляет 17 млн. на каждую сеть.
- Класс B. Первые биты IP-адреса равны 10. Начальные два октета относятся к идентификатору сети, а последние два – к идентификатору узла. Возможно создание 16384 сетей, каждая из которых поддерживает размещение 65000 узлов.
- Класс C. Начальные биты IP-адреса равны 110. За идентификацию сети отвечают первые три октета, позволяющие создать 2 млн. сетей. Последний октет отводится для идентификации узлов, максимальное число которых составляет 254 на каждую сеть.
- Класс D. Запись IP-адреса начинается с битов 1110. В сетях подобного формата используется широковещательная рассылка сообщений нескольким узлам.
- Класс E. IP-адреса зарезервированы для использования в будущем. Первые биты всегда равны 11110.
IP-адрес в классовой архитектуре сетевой адресации состоит из двух частей:
- Идентификатор сети. Определяет сеть, содержащую подключённые узлы.
- Идентификатор узла. Отвечает за обозначение узла – сервера, маршрутизатора или любого другого TCP/IP-устройства.
Важно! В связи с ограниченностью ресурса адресов IPv4, в настоящее время классовая адресация почти перестала использоваться. Ей на смену пришла технология бесклассовой междоменной маршрутизации (Classless Inter-Domain Routing, CIDR). Бесклассовая адресация более экономно использует диапазон адресов IPv4, так как в ней нет строгой привязки масок подсети к адресам подсети.
TCP/IP
Любая сеть с IP-адресацией построена на основе TCP/IP – модели, включающей в себя стек протоколов, применяемых при передаче данных по сети. Основными протоколами являются TCP и IP, но имеется и масса других вариантов.
Уровни TCP/IP
- Канальный. Отвечает за физическую передачу данных посредством использования таких протоколов, как Ethernet или WI-FI.
- Сетевой (Интернет). На этом уровне находится система IP-адресов, и осуществляется маршрутизация – перемещение пакетов между устройствами. Сетевой уровень совмещает протоколы: IP, ICMP, IGMP.
- Транспортный. Здесь расположены протоколы TCP и UDP, отвечающие за передачу данных. Первый осуществляет гарантированное перемещение информации, предварительно устанавливая соединение с сетью. Второй же отправляет сообщения без осуществления «рукопожатия», что повышает скорость передачи данных, но также создаёт риск потери отдельных пакетов.
- Прикладной. Совмещает все высокоуровневые протоколы, взаимодействующие с системными приложениями. К таким относятся Telnet, FTP, SMTP, SNMP и подобные.
Сетевое расположение IP-адресов
Уникальные IP-адреса, которые назначаются специальными организациями (например, Интернет-провайдером), называются внешними, белыми или публичными. Публичные IP-адреса применяются для получения доступа к Интернету и осуществления взаимодействия с другими узлами через публичную сеть. Устройство с внешним IP-адресом видно другим пользователям в Интернете.
Кроме того, существуют частные IP-адреса, именуемые также серыми или внутренними. Серые IP-адреса назначаются устройствам в локальной сети и не видны в Интернете. К примеру, можно представить дом, в котором к WI-FI роутеру подключено несколько устройств. Все они объединены в одну сеть и имеют серые IP-адреса.
Публичные IP-адреса | Частные IP-адреса |
Глобальный (внешний) охват. | Местный (внутренний) охват. |
Используются для соединений через Интернет за пределами частной сети. | Используется для связи с другими устройствами в частной сети. |
Уникальный числовой код, не используемый другими устройствами. | Неуникальный числовой код, который может использоваться другими устройствами в других частных сетях. |
Можно узнать по поисковому запросу типа: «Мой IP-адрес» («What is my IP»). | Можно найти во внутренних настройках устройства. |
Назначаются интернет-провайдером. | Присваиваются маршрутизатором конкретному устройству. |
Платные. | Бесплатные. |
Может использоваться любое число, не входящее в диапазон частных IP-адресов. | 10.0.0.0 — 10.255.255.255 172.16.0.0 — 172.31.255.255 192.168.0.0 — 192.168.255.255 |
Пример: 8.8.8.8. | Пример: 10.11.12.13 |
Присвоение IP-адресов
Динамическое назначение
При подключении к сети через протокол динамической настройки узла (DHCP / Dynamic Host Configuration Protocol) все параметры стека TCP/IP автоматически устанавливаются на устройстве. Узлу назначается динамический IP-адрес, который меняется на другой при переподключении устройства. Диапазон IP-адресов указывается на сервере DHCP.
Статическое назначение
Статический IP-адрес присваивается вручную и не изменяется при переподключении к сети. Этот тип присваивания используется на устройствах, доступ к которым должен производится по одному адресу (например, на серверах).
Версии IP
IPv4
В сентябре 1981 года появился первый стандарт интернет-протокола (IP) IPv4, который положил начало современной сети Интернет. Ipv4 IP-адрес имеет вид: 192.168.50.1.
Подробнее этот формат разобран выше.
IPv6
Интернет с 1980-х годов начал стремительно расти, поэтому появилась угроза истощения пула возможных адресов – их просто не хватило бы на все сети и узлы. Поэтому в 1995 году появился формат IPv6, при котором длина IP-адреса возросла с 32 до 128 бит, а десятичная система сменилась шестнадцатеричной.
IP-адрес IPv6 состоит из 16 октетов (8 блоков по 2 октета), раздёленных двоеточиями. В полном виде запись IPv6 выглядит следующим образом: 2001:0bd7:0ccf:0006:0000:0000:012f:002d.
Адрес IPv6 можно сжать, исключив нули из записи. Сокращенная форма IPv6: 2001:bd7:ccf:12f:2d.
Развитие IPv6
Новый формат IP-адреса развивается сравнительно медленно. Первое внутреннее внедрение произошло у Google ещё в 2008, тогда протокол прошёл успешное тестирование. 6 июня 2012 года совершился повсеместный запуск IPv6.
Кстати. Число возможно доступных IPv6 адресов равняется 340 ундециллионам (ундециллион – число с 36 нулями). Для сравнения, в формате IPv4 этот показатель не превышает отметки 3,4 миллиона IP-адресов.
Многие провайдеры стали предоставлять пользователям услуги с использованием новой технологии, поэтому доля трафика IPv6 к 2020 году составила 30% по всему миру. В России доля трафика IPv6 составляет 4.5%, но постепенно увеличивается. Основным фактором, замедляющим процесс внедрения IPv6, является необходимость замены оборудования провайдеров на более новое, что несёт дополнительные затраты.
DNS и IP-адрес
Путешествуя по Интернету, пользователь устанавливает соединение через браузер с другими серверами в основном не по IP-адресу, а с помощью доменного имени. Система доменных имён (DNS) служит для перенаправления на постоянный IP-адрес конечного веб-ресурса. Говоря простыми словами, она преобразовывает буквенные значения доменного имени в цифры IP-адреса.
Например, чтобы попасть на сайт поисковика Google, не нужно вводить сложный в запоминании числовой адрес «74.125.131.100». Достаточно набрать в адресной строке доменное имя «.google.com».
За осуществление подобной переадресации отвечает DNS-сервер, который работает согласно информации из DNS-записей. Продолжая «телефонную» аналогию можно сказать, что если IP-адрес — это номер телефона, то сервер DNS — это телефонная книга, содержащая все подобные номера.
Домены от Eternalhost — быстрый и выгодный способ получить имя для веб-ресурса! Статус LIR, широкий выбор популярных зон, возможность продления по цене покупки, бесплатный DNS-хостинг.
Как узнать IP-адрес
Определить IP-адрес используемого устройства можно при помощи поискового запроса в браузере вида «мой ip-адрес» («What is my IP»). Многие сервисы, такие как Whoer, 2ip и WhiteWhois, проверяют идентификатор IP-адреса и предоставляют более подробную информацию о пользователе (например, название провайдера или примерное местоположение устройства).
В локальной сети адрес устройства указывается в настройках операционной системы, поэтому прибегать к внешними инструментам не требуется. Определить локальный IP-адрес можно следующими способами.
- Windows – через командную строку (поиск -> «cmd» -> в окне прописать «ipconfig»).
- Unix/Linux – с помощью команды «ifconfig».
- MacOS – «Системные настройки» -> «Сеть».
- iOS – через «Настройки». «Wi-Fi» -> нажать значок информации «i» -> информация во вкладке «DHCP».
- Android – «Настройки» -> «О телефоне» -> «Общая информация».
Анонимность и безопасность
«Вычислю по IP»
Это скорее миф, чем реальная угроза. Среди пользователей существует заблуждение, что злоумышленник может отследить человека, узнав его внешний IP-адрес. На деле не всё так просто — информация о клиентах находится в безопасности у провайдера. Доступ к личным данным такого рода могут получить только органы государственной безопасности.
Единственное, что можно узнать по IP-адресу, так это местоположение оборудования провайдера. А такая информация указывает лишь на примерную геолокацию пользователя с точностью до страны и города.
Атака сетевого устройства
Злоумышленник может обнаружить IP-адрес устройства и просканировать его на наличие потенциальных дыр в безопасности. В качестве последних могут выступать брандмауэры со слабой защитой. Также существуют программы, которые прослушивают внешние порты (например, SSH, VNC, HTTP, RDP) устройства пользователя на предмет уязвимостей.
Атаки сетевых устройств проводятся как через Интернет, так и по локальной сети. Иногда спасает использование DHCP — IP-адрес меняется при переподключении, поэтому злоумышленнику приходится заново искать IP и начинать атаку.
Фиксация деятельности со стороны провайдера
Интернет-провайдер выступает в роли посредника и может анализировать сетевой трафик. Данные, передающиеся через незашифрованные протоколы (например, HTTP, FTP), разбираются без проблем. При использовании защищённых вариантов (HTTPS, SFTP, SSH) передаётся информация только об адресе или домене конечного сервера.
Провайдеры не проверяют всех подряд. Подобный анализ трафика выполняется при поступлении запроса со стороны органов безопасности (МВД, ФСБ и других).
Способы защиты IP-адреса
От перечисленных угроз может обезопасить использование сети TOR, прокси или VPN. Представленные типы защиты выполняют скрытие IP-адреса, что анонимизирует деятельность пользователя в сети.
Сеть TOR работает по принципу «луковичной маршрутизации», когда пользовательский трафик перенаправляется через несколько серверов-посредников и выходит в Интернет. Публичный IP-адрес пользователя постоянно меняется, что анонимизирует деятельность и не позволяет отследить трафик. Начать использование сети TOR можно, скачав официальный браузер Tor Browser, который, помимо маршрутизации, блокирует отслеживающие трекеры интернет-ресурсов.
Прокси и VPN работают схоже. Трафик перенаправляется через сервер (или несколько серверов) и выходит в Интернет с подменой IP-адреса. Технология VPN, в отличие от прокси, шифрует данные по пути от пользователя до сервера-посредника, поэтому считается лучшим вариантом в плане безопасности.
Как изменить IP-адрес
Локальная сеть
Изменение IP-адреса выполняется через настройки операционной системы. Далее будут приведены два способа изменения сетевого идентификатора на примере операционных систем Windows и Linux.
Windows
Для начала необходимо открыть «Панель управления» и перейти по пути: «Центр управления сетями и общим доступом» -> «Изменение параметров адаптера».
Далее нужно перейти в свойства необходимого сетевого интерфейса и в появившемся окне открыть свойства компонента «Протокол Интернета версии 4 (TCP/IPv4)». В разделе «Общие» остаётся назначить статический IP-адрес, заполнив все необходимые поля.
Linux
В первую очередь нужно посмотреть список подключенных сетевых интерфейсов. Для этого можно воспользоваться консольной командой: ifconfig.
Необходимо выбрать сетевой интерфейс и запомнить его наименование. Теперь стоит ввести следующую команду, чтобы назначить другой IP-адрес:
sudo ifconfig eth0 192.168.0.1 netmask 255.255.255.0
В приведенном примере:
- eth0 – наименование сетевого интерфейса;
- 168.0.1 – назначаемый IP-адрес;
- 255.255.0 – макса подсети.
Глобальная сеть
Многие провайдеры используют динамическое назначение IP-адреса, поэтому достаточно перезагрузить маршрутизатор (роутер) для смены сетевого идентификатора.
Если назначен белый IP, то варианты решения проблемы уже другие:
- VPN
- Прокси
- Обращение к провайдеру
Первые два способа были описаны выше – эти варианты являются наиболее простыми. Обращение к провайдеру является крайним вариантом – потребуется совершить звонок по номеру телефона горячей линии или сделать запрос на получение IP-адреса в ближайшем филиале.
Заключение
В основе Интернета и любой IP/TCP сети лежит IP-адресация. Каждый системный администратор должен знать её основы для построения сетей как в домашней, так и в корпоративной среде.
Не стоит забывать и о безопасности, ведь плохо сконфигурированная сеть имеет уязвимости, позволяющие злоумышленнику нарушить работу подключения или получить доступ к личной информации.
Оцените материал:
[Всего голосов: 0 Средний: 0/5]
Автор материалов — Лада Борисовна Есакова.
Адрес документа в Интернете состоит из следующих частей:
Протокол ( чаще всего http или ftp), последовательность символов «://» , доменное имя сайта, каталог на сервере, где находится файл, имя файла. Каталоги разделяются символом «/».
Например: http://www.hs.ru/files/user/olga/filenew.zip
IP-адрес компьютера имеет длину 4 байта. Для удобства IP-адрес записывают в виде четырех чисел, разделенных точками. Числа принимают значения от 0 до 255 (т.к. 255 — 8 единиц в двоичной системе – наибольшее число, которое можно записать в один байт).
IP-адрес состоит из двух частей: адреса сети и номера компьютера в этой сети. Для деления адреса на части используют маску. Маска – это 32-битное число, в двоичной записи которого сначала стоят единицы, а потом – нули. Единицы определяют часть адреса, относящуюся к адресу сети, а нули – часть адреса, относящуюся к номеру компьютера в сети.
Адрес файла в интернете
Пример 1.
A | .net |
Б | ftp |
В | :// |
Г | http |
Д | / |
Е | .org |
Ж | txt |
Доступ к файлу ftp.net , находящемуся на сервере txt.org, осуществляется по протоколу http. В таблице фрагменты адреса файла закодированы буквами от А до Ж. Запишите последовательность этих букв, кодирующую адрес указанного файла в сети Интернет.
Решение:
При записи адреса файла в интернете сначала указывается протокол, затем ставится последовательность символов ://, затем имя сервера, затем символ /, и лишь потом имя файла: http://txt.org/ftp.net.
Ответ: ГВЖЕДБА
Восстановление IP-адресов
Пример 2.
Петя записал IP-адрес школьного сервера на листке бумаги и положил его в карман куртки. Петина мама случайно постирала куртку вместе с запиской. После стирки Петя обнаружил в кармане четыре обрывка с фрагментами IP-адреса. Эти
фрагменты обозначены буквами А, Б, В и Г. Восстановите IP-адрес. В ответе укажите последовательность букв, обозначающих фрагменты, в порядке, соответствующем IP-адресу.
Решение:
IP-адрес представляет собой 4 числа, разделенные точками, причем эти числа не больше 255.
Посмотрим внимательнее на данные фрагменты: под буквой Г мы видим «.42». Так как числа в IP-адресе не могут быть больше 255, мы не можем ничего дописать к этому числу, а фрагментов, начинающихся с точки, больше нет, следовательно, этот фрагмент – последний.
На фрагменте под буквой Б число без точек, значит, это либо последний фрагмент, либо первый. Место последнего фрагмента уже занято, значит фрагмент Б первый.
В конце фрагмента А — число 212, отделенное точкой, значит за фрагментом А должен следовать фрагмент, начинающийся с точки. Значит, фрагмент А идет перед фрагментом Г.
Ответ: БВАГ
Определение адреса сети
Пример 3.
В терминологии сетей TCP/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. Обычно маска записывается по тем же правилам, что и IP-адрес. Адрес сети получается в результате применения поразрядной конъюнкции к заданным IP-адресу узла и маске.
По заданным IP-адресу узла и маске определите адрес сети.
IP-адрес узла: 218.137.218.137
Маска: 255.255.248.0
При записи ответа выберите из приведённых в таблице чисел четыре элемента IP-адреса и запишите в нужном порядке соответствующие им буквы без использования точек.
При записи ответа выберите из приведенных в таблице чисел 4 фрагмента четыре элемента IP-адреса и запишите в нужном порядке соответствующие им буквы без точек.
A | B | C | D | E | F | G | H |
255 | 249 | 218 | 216 | 137 | 32 | 8 | 0 |
Пример. Пусть искомый адрес сети 192.168.128.0 и дана таблица
A | B | C | D | E | F | G | H |
128 | 168 | 255 | 8 | 127 | 0 | 17 | 192 |
В этом случае правильный ответ будет HBAF.
Решение:
Адрес сети получается в результате поразрядной конъюнкции чисел маски и чисел адреса узла (в двоичном коде). Конъюнкция 0 с любым числом всегда равна 0, а конъюнкция 25510 (8 единиц в двоичной системе) с любым числом равна этому числу.
IP-адрес узла: 218.137.218.137
Маска: 255.255.248.0
Значит, первые два числа адреса сети останутся такими же, как у IP-адрес узла, а последнее число будет 0. Нам осталось провести поразрядную конъюнкцию двоичной записи чисел 218 и 248.
24810 = 111110002
21810 = 110110102
Результатом конъюнкции является число 110110002 = 216.
Сопоставим варианты ответа получившимся числам: 218, 137, 216, 0.
Ответ: CEDH
Определение маски сети
Пример 4.
В терминологии сетей TCP/IP маской сети называется двоичное число,
определяющее, какая часть IP-адреса узла сети относится к адресу сети,
а какая – к адресу самого узла в этой сети. Обычно маска записывается
по тем же правилам, что и IP-адрес, – в виде четырёх байтов, причём каждый
байт записывается в виде десятичного числа. При этом в маске сначала
(в старших разрядах) стоят единицы, а затем с некоторого разряда – нули.
Адрес сети получается в результате применения поразрядной конъюнкции
к заданному IP-адресу узла и маске.
Например, если IP-адрес узла равен 231.32.255.131, а маска равна
255.255.240.0, то адрес сети равен 231.32.240.0.
Для узла с IP-адресом 111.81.208.27 адрес сети равен 111.81.192.0. Чему
равно наименьшее возможное значение третьего слева байта маски? Ответ
запишите в виде десятичного числа.
Решение:
Поскольку нас интересует только третий байт маски, запишем третий байт IP-адреса и адреса сети в двоичной системе счисления:
20810 = 110100002
19210 = 110000002
С каким числом нужно произвести конъюнкцию 110100002 , чтобы получить 110000002 ? Очевидно, что первые две цифры должны быть единицами, а 4-я нулем.
Это или 11000000, или 11100000. По условию задачи требуется найти наименьшее значение – это 11000000.
110000002 = 19210
Ответ: 192
Подсчет количества адресов
Пример 5.
В терминологии сетей TCP/IP маской подсети называется 32-разрядное двоичное число, определяющее, какие именно разряды IP-адреса компьютера являются общими для всей подсети – в этих разрядах маски стоит 1. Обычно маски записываются в виде четверки десятичных чисел — по тем же правилам, что и IP-адреса. Для некоторой подсети используется маска 255.255.254.0. Сколько различных адресов компьютеров теоретически допускает эта маска, если два адреса (адрес сети и широковещательный) не используют?
Решение:
За адрес компьютера в маске отвечают разряды, содержащие нули. В маске 255.255.254.0. первые два числа состоят полностью из единиц, т.е. определяют адрес сети. Запишем третье число маски в двоичном виде: 254 = 111111102 .
Четвертое число маски в двоичном представлении состоит из 8 нулей.
Т.е. маска выглядит следующим образом:
11111111 11111111 11111110 00000000
Т.е. под адрес компьютера выделено 9 разрядов, значит туда можно записать 29 = 512 адресов, но, так как два адреса не используются, получаем 512 – 2 = 510.
Ответ: 510
Определение номера компьютера в сети
Пример 6.
Маской подсети называется 32-разрядное двоичное число, которое определяет, какая часть IP-адреса компьютера относится к адресу сети, а какая часть IP-адреса определяет адрес компьютера в подсети. В маске подсети старшие биты, отведенные в IP-адресе компьютера для адреса сети, имеют значение 1; младшие биты, отведенные в IP-адресе компьютера для адреса компьютера в подсети, имеют значение 0.
Если маска подсети 255.255.224.0 и IP-адрес компьютера в сети 206.158.124.67, то номер компьютера в сети равен_____
Решение:
Первые два числа маски равны 255 (в двоичной записи состоят полностью из единиц). Третье число маски 22410 = 111000002. Четвертое число маски состоит из 8 нулей. Т.е. маска выглядит следующим образом:
11111111 11111111 11100000 00000000
Т.е. под адрес компьютера отведено 13 разрядов.
Запишем последние два числа IP-адреса компьютера в сети: 12410 = 11111002
6710 = 10000112
Т.е. последние два числа IP-адреса компьютера в сети записываются так:
01111100 01000011. Нам нужны только последние 13 разрядов (подчеркнутая часть), переведем её в десятичную систему счисления: 11100010000112 = 723510
Ответ: 7235
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Задача №12. Адресация в интернете. Восстановление IP- адресов, определение адреса сети, определение количества адресов и номера компьютера в сети.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
07.01.2023
Важную часть технологии TCP/IP составляют задачи адресации, к числу которых относятся следующие:
-
Согласованное использование адресов различного типа. Эта задача включает отображение адресов разных типов, например преобразование сетевого IP-адреса в локальный, доменного имени — в IP-адрес.
-
Обеспечение уникальности адресов. В зависимости от типа адреса требуется обеспечивать однозначность адресации в пределах компьютера, подсети, корпоративной сети или Интернета.
-
Конфигурирование сетевых интерфейсов и сетевых приложений.
Каждая из перечисленных задач имеет достаточно простое решение для сети, число узлов которой не превосходит нескольких десятков. Например, для отображения символьного доменного имени на IP-адрес достаточно поддерживать на каждом хосте таблицу всех символьных имен, используемых в сети, и соответствующих им IP-адресов. Столь же просто «вручную» присвоить всем интерфейсам в небольшой сети уникальные адреса. Однако в крупных сетях эти же задачи усложняются настолько, что требуют принципиально других решений.
Ключевым словом, которое характеризует подход к решению этих проблем, принятый в TCP/IP, является масштабируемость.
Процедуры, предлагаемые TCP/IP для назначения, отображения и конфигурирования адресов, одинаково хорошо работают в сетях разного масштаба. В этой главе наряду с собственно схемой образования IP-адресов мы познакомимся с наиболее популярными масштабируемыми средствами поддержки адресации в сетях TCP/IP: технологией бесклассовой междоменной маршрутизации, системой доменных имен, протоколом динамического конфигурирования хостов.
Формат IP-адреса
В заголовке IP-пакета для хранения IP-адресов отправителя и получателя отводятся два поля, каждое имеет фиксированную длину 4 байта (32 бита). IP-адрес состоит из двух логических частей — номера сети и номера узла в сети.
Наиболее распространенной формой представления IP-адреса является запись в виде четырех чисел, представляющих значения каждого байта в десятичной форме и разделенных точками, например:
128.10.2.30
Этот же адрес может быть представлен в двоичном формате:
10000000 00001010 00000010 00011110
А также в шестнадцатеричном формате:
80.0A.02.1D
Заметим, что запись адреса не предусматривает специального разграничительного знака между номером сети и номером узла. Вместе с тем при передаче пакета по сети часто возникает необходимость разделить адрес на эти две части. Например, маршрутизация, как правило, осуществляется на основании номера сети, поэтому каждый маршрутизатор, получая пакет, должен прочитать из соответствующего поля заголовка адрес назначения и выделить из него номер сети. Каким образом маршрутизаторы определяют, какая часть из 32 бит, отведенных под IP-адрес, относится к номеру сети, а какая — к номеру узла?
Можно предложить несколько вариантов решения этой проблемы.
-
Простейший из них состоит в использовании фиксированной границы При этом всё 32-битное поле адреса заранее делится на две части не обязательно равной, но фиксированной длины, в одной из которых всегда будет размещаться номер сети, в другой — номер узла. Решение очень простое, но хорошее ли? Поскольку поле, которое отводится для хранения номера узла, имеет фиксированную длину, все сети будут иметь одинаковое максимальное число узлов. Если, например, под номер сети отвести один первый байт, то все адресное пространство распадется на сравнительно небольшое (28) число сетей огромного размера (224 узлов). Если границу передвинуть дальше вправо, то сетей станет больше, но все равно все они будут одинакового размера. Очевидно, что такой жесткий подход не позволяет дифференцированно удовлетворять потребности отдельных предприятий и организаций. Именно поэтому он не нашел применения, хотя и использовался на начальном этапе существования технологии TCP/IP (RFC 760).
-
Второй подход (RFC 950, RFC 1518) основан на использовании маски, которая позволяет максимально гибко устанавливать границу между номером сети и номером узла. При таком подходе адресное пространство можно использовать для создания множества сетей разного размера.
Некоторые адреса являются зарезервированными и не могут быть присвоены сетевым устройствам. К ним относятся следующие:
— 0 Сетевые адреса, идентифицирующие саму сеть, например сеть 198.150.11.0 IP-адрес, у которого все биты, отведенные под адрес узла заполнены нулями зарезервирован под номер сети, например, 176.0.0.0
— 255 Широковещательный адрес 198.150.11.255 используется для широковещательной рассылки всем сетевым устройствам
— Сеть с номером 127.0.0.0 зарезервирована для обратного петлевого тестирования (маршутизаторы или локальные узлы могут использовать его для передачи пакетов самим себе).
Для того чтобы программное обеспечение могло автоматически выделять номера конкретных компьютеров из используемых в данной сетевой системе IP-адресов, применяются так называемые маски подсети.
Маска — это число, применяемое в паре с IP-адрссом, причем двоичная запись маски содержит непрерывную последовательность единиц в тех разрядах, которые должны в IP-адресе интерпретироваться как номер сети. Граница между последовательностями единиц и нулей в маске соответствует границе между номером сети и номером узла в IР-адресе.
-
И, наконец, способ, основанный на классах адресов (RFC 791). Этот способ представляет собой компромисс по отношению к двум предыдущим: размеры сетей хотя и не могут быть произвольными, как при использовании масок, но и не должны быть одинаковыми, как при установлении фиксированных границ. Вводится пять классов адресов: А, В, С, D, Е. Три из них — А, В и С — предназначены для адресации сетей, а два — D и Е — имеют специальное назначение. Для каждого класса сетевых адресов определено собственное положение границы между номером сети и номером узла.
Классы IP-адресов
Признаком, на основании которого IP-адрес относят к тому или иному классу, являются значения нескольких первых битов адреса. Таблица 15.1 иллюстрирует структуру
IP-адресов разных классов.
К классу А относится адрес, в котором старший бит имеет значение 0. В адресах класса А под идентификатор сети отводится 1 байт, а остальные 3 байта интерпретируются как номер узла в сети. Сети, все IP-адреса которых имеют значение первого байга в диапазоне от 1 (00000001) до 126 (01111110), называются сетями класса А. Значение 0 (00000000) первого байта не используется, а значение 127 (01111111) зарезервировано для специальных целей (см. далее). Сетей класса А сравнительно немного, зато количество узлов в них может достигать 224, то есть 16 777 216 узлов.
К классу В относятся все адреса, старшие два бита которых имеют значение 10. В адресах класса В под номер сети и под номер узла отводится по 2 байта. Сети, значения первых двух байтов адресов которых находятся в диапазоне от 128.0 (10000000 00000000) до 191.255 (10111111 11111111), называются сетями класса В. Ясно, что сетей класса В больше, чем сетей класса А, а размеры их меньше. Максимальное количество узлов в сетях класса В составляет 216 (65 536)
К классу С относятся все адреса, старшие три бита которых имеют значение 110. В адресах класса С под номер сети отводится 3 байта, а под номер узла — 1 байт. Сети, старшие три байта которых находятся в диапазоне от 192.0.0 (11000000 00000000 00000000) до
223.255.255(11011111 11111111 11111111), называются сетями класса С. Сети класса С наиболее распространены, и наименьшее максимальное число узлов в них равно 2^8 (256).
Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый групповой адрес (multicast address). В то время как адреса классов А, В и С служат для идентификации отдельных сетевых интерфейсов, то есть являются индивидуальными адресами (unicast address), групповой адрес идентифицирует группу сетевых интерфейсов, которые в общем случае могут принадлежать разным сетям. Интерфейс, входящий в группу, получает наряду с обычным индивидуальным IP-адресом еще один групповой адрес. Если при отправке пакета в качестве адреса назначения указан адрес класса D, то такой пакет должен быть доставлен всем узлам, которые входят в группу.
Если адрес начинается с последовательности 11110, то это значит, что данный адрес относится к классу Е. Адреса этого класса зарезервированы для будущих применений.
Чтобы получить из IP-адреса номер сети и номер узла, требуется не только разделить адрес на две соответствующие части, но и дополнить каждую из них нулями до полных 4 байт. Возьмем, например, адрес класса В 129.64.134.5. Первые два байта идентифицируют сеть, а последующие два — узел. Таким образом, номером сети является адрес 129.64.0.0, а номером узла — адрес 0.0.134.5.
Регистрация IP адресов.
IP- адрес (Internet Protocol address) — это своеобразный идентификатор определенного устройства (например ПК, виртуальный сервер), которое подключено к сети Интернет. Основная функциональная обязанность таких адресов сети — это формирование аффективного соединения оборудования (телефон, компьютер, ноутбук, сервер и т.п.) в сети. Таким образом, каждый компьютер, который имеет доступ к Интернет, имеет свой IP-адрес, посредством которого данный пользователь анонсируется в сети. Если при подключении к сети Интернет Ваш провайдер выдал Вам индивидуальный IP-адрес, этот адрес является статическим (либо«белым»); если же Интернет-провайдер не выдает каждому пользователю отдельный сетевой адрес, пользователь получают доступ к сети через, так называемый, «серый» IP-адрес. Поскольку провайдерам необходимо огромное количество адресов, иногда они используют «серые» адреса для работы в локальной сети, что абсолютно не влияет на качество связи либо скорость соединения, но такие адреса не могут анонсироваться в глобальной сети,а значит соединиться с оборудованием будет невозможно. Узнать является присвоен ли Вам выделенный IP-адрес Вы можете на прямую у Вашего Интернет-провайдера.
Стандартной формой записи выделенного IP есть четыре цифры от 0 до 255 с точкой после каждой, например 192.168.2.1. Большое количество сетевых адресов, объединяют в блоки: PI (Provider Independent) и PA (Provider Aggregatable). PA — зависимый блок, который принадлежит IP-провайдеру и предоставляется Интернет-провайдеру в аренду; PI — независимый блок адресов, который находится в собственности клиента и может анонсироваться (выводиться в Интернет) при помощи разных IP-провайдеров.
IP-адреса выдаются региональными Интернет-регистраторами (RIR- Regional Internet Registry). Существует пять региональных регистраторов, которые выдают сетевые ip адреса:
1) ARIN – в Северной Америке;
2) APNIC – в странах Юго-Восточной Азии;
3) AfriNIC – в странах Африки;
4) LACNIC – в странах Южная Америка и бассейн Карибского моря;
5) RIPENCC – в странах Европы, Центральной Азии и Ближнего Востока.
Подробнее: https://it-master.od.ua/webmaster/rjegistracija-ip-adrjesov.html
Региональные Интернет-регистраторы выдают блоки адресов локальным Интернет-регистраторам (lIR- Local Internet Registry), а они в свою очередь передают их более мелким Интернет провайдерам, которые нуждаются в тысячах таких адресов ежедневно, что бы присвоить выделенный IP-адрес каждому пользователю Интернет.
Источники:
https://studfiles.net/preview/2224637/
https://studopedia.ru/11_48913_zarezervirovannie-IP-adresa—i-.html
https://it-master.od.ua/webmaster/rjegistracija-ip-adrjesov.html
Параметр | Десятичная запись | Шестнадцатеричная запись | Двоичная запись |
IP адрес | 176.194.91.112 | B0.C2.5B.70 | 10110000.11000010.01011011.01110000 |
---|---|---|---|
Префикс маски подсети | /24 | ||
Маска подсети | 255.255.255.0 | FF.FF.FF.00 | 11111111.11111111.11111111.00000000 |
Обратная маска подсети (wildcard mask) | 0.0.0.255 | 00.00.00.FF | 00000000.00000000.00000000.11111111 |
IP адрес сети | 176.194.91.0 | B0.C2.5B.00 | 10110000.11000010.01011011.00000000 |
Широковещательный адрес | 176.194.91.255 | B0.C2.5B.FF | 10110000.11000010.01011011.11111111 |
IP адрес первого хоста | 176.194.91.1 | B0.C2.5B.01 | 10110000.11000010.01011011.00000001 |
IP адрес последнего хоста | 176.194.91.254 | B0.C2.5B.FE | 10110000.11000010.01011011.11111110 |
Количество доступных адресов | 256 | ||
Количество рабочих адресов для хостов | 254 |
Ссылка на эту страницу: shootnick.ru/ip_calc/176.194.91.112/24
Так же у нас есть IPv6 калькулятор подсетей
Познавательное о IPv4 …
IPv4 (англ. Internet Protocol version 4) — четвёртая версия интернет протокола (IP). Первая широко используемая версия. Протокол описан в RFC 791 (сентябрь 1981 года), заменившем RFC 760 (январь 1980 года).
IPv4 использует 32-битные (четырёхбайтные) адреса, ограничивающие адресное пространство 4 294 967 296 (232) возможными уникальными адресами.
Традиционной формой записи IPv4 адреса является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками. Через дробь указывается длина маски подсети.
IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (10.0.0.0/8, 172.16.0.0/12 или 192.168.0.0/16). Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо региональным интернет-регистратором (Regional Internet Registry, RIR). Согласно данным на сайте IANA, существует пять RIR: ARIN, обслуживающий Северную Америку, а также Багамы, Пуэрто-Рико и Ямайку; APNIC, обслуживающий страны Южной, Восточной и Юго-Восточной Азии, а также Австралии и Океании; AfriNIC, обслуживающий страны Африки; LACNIC, обслуживающий страны Южной Америки и бассейна Карибского моря; и RIPE NCC, обслуживающий Европу, Центральную Азию, Ближний Восток. Региональные регистраторы получают номера автономных систем и большие блоки адресов у IANA, а затем выдают номера автономных систем и блоки адресов меньшего размера локальным интернет-регистраторам (Local Internet Registries, LIR), обычно являющимся крупными провайдерами. Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.
Есть два способа определения того, сколько бит отводится на маску подсети, а сколько — на IP-адрес. Изначально использовалась классовая адресация (INET), но со второй половины 90-х годов XX века она была вытеснена бесклассовой адресацией (CIDR), при которой количество адресов в сети определяется маской подсети.
Иногда встречается запись IP-адресов вида «192.168.5.0/24». Данный вид записи заменяет собой указание диапазона IP-адресов. Число после косой черты означает количество единичных разрядов в маске подсети. Для приведённого примера маска подсети будет иметь двоичный вид 11111111 11111111 11111111 00000000 или то же самое в десятичном виде: «255.255.255.0». 24 разряда IP-адреса отводятся под номер сети, а остальные 32-24=8 разрядов полного адреса — под адреса хостов этой сети, адрес этой сети и широковещательный адрес этой сети. Итого, 192.168.5.0/24 означает диапазон адресов хостов от 192.168.5.1 до 192.168.5.254, а также 192.168.5.0 — адрес сети и 192.168.5.255 — широковещательный адрес сети. Для вычисления адреса сети и широковещательного адреса сети используются формулы:
- адрес сети = IP.любого_компьютера_этой_сети AND MASK (адрес сети позволяет определить, что компьютеры в одной сети)
- широковещательный адрес сети = IP.любого_компьютера_этой_сети OR NOT(MASK) (широковещательный адрес сети воспринимается всеми компьютерами сети как дополнительный свой адрес, то есть пакет на этот адрес получат все хосты сети как адресованные лично им. Если на сетевой интерфейс хоста, который не является маршрутизатором пакетов, попадёт пакет, адресованный не ему, то он будет отброшен).
Запись IP-адресов с указанием через слэш маски подсети переменной длины также называют CIDR-адресом в противоположность обычной записи без указания маски, в операционных системах типа UNIX также именуемой INET-адресом.
В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов: если все двоичные разряды IP-адреса равны 1, то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast). Если в поле номера узла назначения стоят только единицы, то пакет, имеющий такой адрес, рассылается всем узлам сети с заданным номером сети. Например, в сети 192.168.5.0 с маской 255.255.255.0 пакет с адресом 192.168.5.255 доставляется всем узлам этой сети. Такая рассылка называется широковещательным сообщением (direct broadcast).
IP-адрес называют статическим (постоянным, неизменяемым), если он назначается пользователем в настройках устройства, либо назначается автоматически при подключении устройства к сети и не может быть присвоен другому устройству.
IP-адрес называют динамическим (непостоянным, изменяемым), если он назначается автоматически при подключении устройства к сети и используется в течение ограниченного промежутка времени, указанного в сервисе назначавшего IP-адрес (DHCP).
Для получения IP-адреса клиент может использовать один из следующих протоколов:
- DHCP (RFC 2131) — наиболее распространённый протокол настройки сетевых параметров.
- BOOTP (RFC 951) — простой протокол настройки сетевого адреса, обычно используется для бездисковых станций.
- IPCP (RFC 1332) в рамках протокола PPP (RFC 1661).
- Zeroconf (RFC 3927) — протокол настройки сетевого адреса, определения имени, поиск служб.
- RARP (RFC 903) Устаревший протокол, использующий обратную логику (из аппаратного адреса — в логический) популярного и поныне в широковещательных сетях протокола ARP. Не поддерживает распространения информации о длине маски (не поддерживает VLSM).
Адреса, используемые в локальных сетях, относят к частным. К частным относятся IP-адреса из следующих сетей:
- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16
Также для внутреннего использования:
- 127.0.0.0/8 — используется для коммуникаций внутри хоста.
- 169.254.0.0/16 — используется для автоматической настройки сетевого интерфейса в случае отсутствия DHCP (за исключением первой и последней /24 подсети).
Полный список описания сетей для IPv4 представлен в RFC 6890.