Как называется бесконтактная зарядка телефона

The primary coil in the charger induces a current in the secondary coil in the device being charged.

Inductive charging (also known as wireless charging or cordless charging) is a type of wireless power transfer. It uses electromagnetic induction to provide electricity to portable devices. Inductive charging is also used in vehicles, power tools, electric toothbrushes, and medical devices. The portable equipment can be placed near a charging station or inductive pad without needing to be precisely aligned or make electrical contact with a dock or plug.

Inductive charging is named so because it transfers energy through inductive coupling. First, alternating current passes through an induction coil in the charging station or pad. The moving electric charge creates a magnetic field, which fluctuates in strength because the electric current’s amplitude is fluctuating. This changing magnetic field creates an alternating electric current in the portable device’s induction coil, which in turn passes through a rectifier to convert it to direct current. Finally, the direct current charges a battery or provides operating power.[1][2]

Greater distances between sender and receiver coils can be achieved when the inductive charging system uses resonant inductive coupling, where a capacitor is added to each induction coil to create two LC circuits with a specific resonance frequency. The frequency of the alternating current is matched with the resonance frequency, and the frequency is chosen depending on the distance desired for peak efficiency.[1] Recent improvements to this resonant system include using a movable transmission coil (i.e., mounted on an elevating platform or arm) and the use of other materials for the receiver coil such as silver-plated copper or sometimes aluminum to minimize weight and decrease resistance due to the skin effect.

History[edit]

Induction power transfer was first used in 1894 when M. Hutin and M. Le-Blanc proposed an apparatus and method to power an electric vehicle.[3] However, combustion engines proved more popular, and this technology was forgotten for a time.[2]

In 1972, Professor Don Otto of the University of Auckland proposed a vehicle powered by induction using transmitters in the road and a receiver on the vehicle.[2] In 1977, John E. Trombly was awarded a patent for an «Electromagnetically coupled battery charger.» The patent describes an application to charge headlamp batteries for miners (US 4031449). The first application of inductive charging used in the United States was performed by J.G. Bolger, F.A. Kirsten, and S. Ng in 1978. They made an electric vehicle powered with a system at 180 Hz with 20 kW.[2] In California in the 1980s, a bus was produced, which was powered by inductive charging, and similar work was being done in France and Germany around this time.[2]

In 2006, MIT began using[clarification needed] resonant coupling. They were able to transmit a large amount of power without radiation over a few meters. This proved to be better for commercial needs, and it was a major step for inductive charging.[2][failed verification]

The Wireless Power Consortium (WPC) was established in 2008, and in 2010 they established the Qi standard. In 2012, the Alliance for Wireless Power (A4WP) and the Power Matter Alliance (PMA) were founded. Japan established Broadband Wireless Forum (BWF) in 2009, and they established the Wireless Power Consortium for Practical Applications (WiPoT) in 2013. The Energy Harvesting Consortium (EHC) was also founded in Japan in 2010. Korea established the Korean Wireless Power Forum (KWPF) in 2011.[2] The purpose of these organizations is to create standards for inductive charging. In 2018, The Qi Wireless Standard was adopted for use in military equipment in North Korea, Russia, and Germany

Application areas[edit]

Applications of inductive charging can be divided into two broad categories: Low power and high power:

  • Low power applications are generally supportive of small consumer electronic devices such as cell phones, handheld devices, some computers, and similar devices which normally charge at power levels below 100 watts. Typically, the AC utility frequency of 50 or 60 Hertz is used.[4]
  • High power inductive charging generally refers to inductive charging of batteries at power levels above 1 kilowatt. The most prominent application area for high power inductive charging is in support of electric vehicles, where inductive charging provides an automated and cordless alternative to plug-in charging. Power levels of these devices can range from approximately 1 kilowatt to 300 kilowatts or higher. All high-power inductive charging systems use resonated primary and secondary coils. These systems work in the long wave range with frequencies up to 130 kHz. The use of short wave frequencies can enhance the system’s efficiency and size[5] but would eventually transmit the signal worldwide. High powers raise the concern of electromagnetic compatibility and radio frequency interference.

Advantages[edit]

  • Protected connections – No corrosion when the electronics are enclosed, away from water or oxygen in the atmosphere. Less risk of electrical faults such as short circuits due to insulation failure, especially where connections are made or broken frequently.[6]
  • Low infection risk – For embedded medical devices, the transmission of power via a magnetic field passing through the skin avoids the infection risks associated with wires penetrating the skin.[7]
  • Durability – Without the need to constantly plug and unplug the device, there is significantly less wear and tear on the socket of the device and the attaching cable.[6]
  • Increased convenience and aesthetic quality – No need for cables.
  • Automated high power inductive charging of electric vehicles allows for more frequent charging events and consequently an extension of driving range.
  • Inductive charging systems can be operated automatically without dependence on people to plug and unplug. This results in higher reliability.
  • Automatic operation of inductive charging in roads theoretically allows vehicles to run indefinitely.[8]

Disadvantages[edit]

The following disadvantages have been noted for low-power (i.e., less than 100 watts) inductive charging devices, and may not apply to high-power (i.e., greater than 5 kilowatts) electric vehicle inductive charging systems.[citation needed]

  • Slower charging – Due to the lower efficiency, devices take 15 percent longer to charge when supplied power is the same amount.[9]
  • More expensive – Inductive charging also requires drive electronics and coils in both device and charger, increasing the complexity and cost of manufacturing.[10][11]
  • Inconvenience – When a mobile device is connected to a cable, it can be moved around (albeit in a limited range) and operated while charging. In most implementations of inductive charging, the mobile device must be left on a pad to charge, and thus can’t be moved around or easily operated while charging. With some standards, charging can be maintained at a distance, but only with nothing present between the transmitter and receiver.[6]
  • Compatible standards – Not all devices are compatible with different inductive chargers. However, some devices have started to support multiple standards.

Inefficiency has other costs besides longer charge times. Inductive chargers produce more waste heat than wired chargers, which may negatively impact battery longevity.[13][better source needed] An amateur 2020 analysis of energy use conducted with a Pixel 4 found that a wired charge from 0 to 100 percent consumed 14.26 Wh (watt-hours), while a wireless charging stand used 19.8 Wh, an increase of 39%. Using a generic brand wireless charging pad and mis-aligning the phone produced consumption up to 25.62 Wh, or an 80% increase. The analysis noted that while this is not likely to be noticeable to individuals, it has negative implications for greater adoption of smartphone wireless charging.[14]

Newer approaches reduce transfer losses through the use of ultra thin coils, higher frequencies, and optimized drive electronics. This results in more efficient and compact chargers and receivers, facilitating their integration into mobile devices or batteries with minimal changes required.[15][16] These technologies provide charging times comparable to wired approaches, and they are rapidly finding their way into mobile devices.

Safety[edit]

An increase in high-power inductive charging devices has led to researchers looking into the safety factor of the electromagnetic fields (EMF) put off by larger inductor coils. With the recent interest in the expansion of high power inductive charging with electric cars, an increase in health and safety concerns has arisen. To provide a larger distance of coverage you would in return need a larger coil for your inductor. An electric car with this size conductor would need about 300 kW from a 400 V battery to emit enough charge.[clarification needed] This much exposure to the skin of a human could prove harmful if not met within the right conditions. Exposure limits can be satisfied even when the transmitter coil is very close to the body.[17]

Testing has been done on how organs can be affected by these fields when put under low levels of frequency from these fields. When exposed to various levels of frequencies you can experience dizziness, light flashes, or tingling through nerves. At higher ranges, you can experience heating or even burning of the skin. Most people experience low EMF in everyday life. The most common place to experience these frequencies is with a wireless charger, usually on a nightstand located near the head.[18]

Standards[edit]

Wireless charging station

Detail of the wireless inductive charging device

Standards refer to the different set operating systems with which devices are compatible. There are two main standards: Qi and PMA.[12] The two standards operate very similarly, but they use different transmission frequencies and connection protocols.[12] Because of this, devices compatible with one standard are not necessarily compatible with the other standard. However, there are devices compatible with both standards.

  • Magne Charge, a largely obsolete inductive charging system, also known as J1773, used to charge battery electric vehicles (BEV) formerly made by General Motors.
  • The emerging SAE J2954 standard allows inductive car charging over a pad, with power delivery up to 11 kW.[19]
  • Qi, an interface standard developed by the Wireless Power Consortium for inductive electrical power transfer. At the time of July 2017, it is the most popular standard in the world, with more than 200 million devices supporting this interface.
  • AirFuel Alliance:
    • In January 2012, the IEEE announced the initiation of the Power Matters Alliance (PMA) under the IEEE Standards Association (IEEE-SA) Industry Connections. The alliance is formed to publish a set of standards for inductive power that are safe and energy-efficient, and have smart power management. The PMA will also focus on the creation of an inductive power ecosystem[20]
    • Rezence was an interface standard developed by the Alliance for Wireless Power (A4WP).
    • A4WP and PMA merged into the AirFuel Alliance in 2015.[21]

Electronic devices[edit]

Many manufacturers of smartphones have started adding this technology into their devices, the majority adopting the Qi wireless charging standard. Major manufacturers such as Apple and Samsung produce many models of their phones in high volume with Qi capabilities. The popularity of the Qi standard has driven other manufacturers to adopt this as their own standard.[22] Smartphones have become the driving force of this technology entering consumers’ homes, where many household technologies have been developed to utilize this technology.

Samsung and other companies have begun exploring the idea of «surface charging», building an inductive charging station into an entire surface such as a desk or table.[22] Contrarily, Apple and Anker are pushing a dock-based charging platform. This includes charging pads and disks that have a much smaller footprint. These are geared for consumers who wish to have smaller chargers that would be located in common areas and blend in with the current décor of their home.[22] Due to the adoption of the Qi standard of wireless charging, any of these chargers will work with any phone as long as it is Qi capable.[22]

Another development is reverse wireless charging, which allows a mobile phone to wirelessly discharge its own battery into another device.[23]

Examples[edit]

An iPhone X being charged by a wireless charger

  • Oral-B rechargeable toothbrushes by the Braun company have used inductive charging since the early 1990s.
  • At the Consumer Electronics Show (CES) in January 2007, Visteon unveiled its inductive charging system for in-vehicle use that could charge only specially made cell phones to MP3 players with compatible receivers.[24]
  • April 28, 2009: An Energizer inductive charging station for the Wii remote was reported on IGN.[25]
  • At CES in January 2009, Palm, Inc. announced its new Pre smartphone would be available with an optional inductive charger accessory, the «Touchstone». The charger came with a required special backplate that became standard on the subsequent Pre Plus model announced at CES 2010. This was also featured on later Pixi, Pixi Plus, and Veer 4G smartphones. Upon launch in 2011, the ill-fated HP Touchpad tablet (after HP’s acquisition of Palm Inc.) had a built in touchstone coil that doubled as an antenna for its NFC-like Touch to Share feature.[15][26][27]
  • March 24, 2013: Samsung launched the Galaxy S3, which supports an optionally retrofittable back cover accessory, included in their separate “Wireless Charging Kit”.
  • Nokia announced on September 5, 2012, the Lumia 920 and Lumia 820, which supports respectively integrate inductive charging and inductive charging with an accessory back.
  • March 15, 2013: Samsung launched the Galaxy S4, which supports inductive charging with an accessory back cover.
  • July 26, 2013: Google and ASUS launched the Nexus 7 2013 Edition with integrated inductive charging.
  • September 9, 2014: Apple announced Apple Watch (released on April 24, 2015), which uses wireless inductive charging.
  • September 12, 2017: Apple announced the AirPower wireless charging mat. It was meant to be capable of charging an iPhone, an Apple Watch, and AirPods simultaneously; the product however was never released. On September 12, 2018, Apple removed most mentions of the AirPower from its website and on March 29, 2019, it canceled the product completely.[28]

Qi devices[edit]

Wireless charging pad used to charge devices with the Qi standard

  • Nokia launched two smartphones (the Lumia 820 and Lumia 920) on 5 September 2012, which feature Qi inductive charging.[29]
  • Google and LG launched the Nexus 4 in October 2012 which supports inductive charging using the Qi standard.
  • Motorola Mobility launched its Droid 3 and Droid 4, both optionally support the Qi standard.
  • On November 21, 2012 HTC launched the Droid DNA, which also supports the Qi standard.
  • October 31, 2013 Google and LG launched the Nexus 5, which supports inductive charging with Qi.
  • April 14, 2014 Samsung launched the Galaxy S5 that supports Qi wireless charging with either a wireless charging back or receiver.
  • November 20, 2015 Microsoft launched the Lumia 950 XL and Lumia 950 which support charging with the Qi standard.
  • February 22, 2016 Samsung announced its new flagship Galaxy S7 and S7 Edge which use an interface that is almost the same as Qi. The Samsung Galaxy S8 and Samsung Galaxy Note 8 released in 2017 also feature Qi wireless charging technology.
  • September 12, 2017 Apple announced that the iPhone 8 and iPhone X would feature wireless Qi standard charging.

Furniture[edit]

  • Ikea has a series of wireless charging furniture that supports the Qi standard.

Dual standard[edit]

  • March 3, 2015: Samsung announced its new flagship Galaxy S6 and S6 Edge with wireless inductive charging through both Qi and PMA compatible chargers. All phones in the Samsung Galaxy S and Note lines following the S6 have supported wireless charging.
  • November 6, 2015 BlackBerry released its new flagship BlackBerry Priv, the first BlackBerry phone to support wireless inductive charging through both Qi and PMA compatible chargers.

Research and other[edit]

  • Transcutaneous Energy Transfer (TET) systems in artificial hearts and other surgically implanted devices.
  • In 2006, researchers at the Massachusetts Institute of Technology reported that they had discovered an efficient way to transfer power between coils separated by a few meters. The team, led by Marin Soljačić, theorized that they could extend the distance between the coils by adding resonance to the equation. The MIT inductive power project, called WiTricity, uses a curved coil and capacitive plates.[30][31]
  • In 2012 the Russian private museum Grand Maket Rossiya opened featuring inductive charging on its model car exhibits.
  • As of 2017, Disney Research has been developing and researching room-scale inductive charging for multiple devices.

Transportation[edit]

Electric vehicle wireless power transfer or wireless charging is generally divided into three categories: stationary charging when the vehicle is parked for an extended period of time; dynamic charging when the vehicle is driven on roads or highways; and quasi-dynamic or semi-dynamic charging, when the vehicle moves at low speeds between stops,[32]: 847  for example when a taxi slowly drives at a taxi rank.[33] Inductive charging is not considered a mature dynamic charging technology as it delivers the least power of the three electric road technologies, its receivers lose 20%-25% of the supplied power when installed on trucks, and its health effects have yet to be documented, according to a French government working group on electric roads.[34]

Stationary charging[edit]

In one inductive charging system, one winding is attached to the underside of the car, and the other stays on the floor of the garage.[35] The major advantage of the inductive approach for vehicle charging is that there is no possibility of electric shock, as there are no exposed conductors, although interlocks, special connectors and RCDs (ground fault interruptors, or GFIs) can make conductive coupling nearly as safe. An inductive charging proponent from Toyota contended in 1998 that overall cost differences were minimal, while a conductive charging proponent from Ford contended that conductive charging was more cost efficient.[36]

From 2010 onwards car makers signaled interest in wireless charging as another piece of the digital cockpit. A group was launched in May 2010 by the Consumer Electronics Association to set a baseline for interoperability for chargers. In one sign of the road ahead a General Motors executive is chairing the standards, effort group. Toyota and Ford managers said they also are interested in the technology and the standards effort.[37]

Daimler’s Head of Future Mobility, Professor Herbert Kohler, however, has expressed caution and said the inductive charging for EVs is at least 15 years away (from 2011) and the safety aspects of inductive charging for EVs have yet to be looked into in greater detail. For example, what would happen if someone with a pacemaker is inside the vehicle? Another downside is that the technology requires a precise alignment between the inductive pick-up and the charging facility.[38]

In November 2011, the Mayor of London, Boris Johnson, and Qualcomm announced a trial of 13 wireless charging points and 50 EVs in the Shoreditch area of London’s Tech City, due to be rolled out in early 2012.[39][40] In October 2014, the University of Utah in Salt Lake City, Utah added an electric bus to its mass transit fleet that uses an induction plate at the end of its route to recharge.[41] UTA, the regional public transportation agency, plans to introduce similar buses in 2018.[42] In November 2012 wireless charging was introduced with 3 buses in Utrecht, The Netherlands. January 2015, eight electric buses were introduced to Milton Keynes, England, which uses inductive charging in the road with proov/ipt technology at either end of the journey to prolong overnight charges.,[43] Later bus routes in Bristol, London and Madrid followed.

Dynamic charging[edit]

The first working prototype of an electric vehicle that charges wirelessly while driving, which is known as «dynamic wireless charging» or «dynamic wireless power transfer», is generally regarded to have been developed at the University of California, Berkeley in the 1980s and 1990s. The first commercialized dynamic wireless charging system, Online Electric Vehicle (OLEV), was developed as early as 2009 by researchers at the Korea Advanced Institute of Science and Technology (KAIST).[32]: 848  Vehicles using the system draw power from a power source underneath the road surface, which is an array of inductive rails or coils.[44][45] Commercialization efforts of the technology have not been successful because of high costs,[46] and its main technical challenge is low efficiency.[47]: 57  Dynamic inductive charging infrastructure was found to increase the occurrence of reflective cracks in road surfaces.[47]: 64 [48] As of 2021, companies and organizations such as Vedecom,[49] Magment, Electreon, and IPT are developing dynamic inductive coil charging technologies.[50] IPT is additionally developing a system that uses inductive rails instead of coils, as the current standards which use coils are «extremely expensive» for dynamic charging, according to the CEO of IPT.[51]

Research and development[edit]

Work and experimentation is currently underway in designing this technology to be applied to electric vehicles. This could be implemented by using a predefined path or conductors that would transfer power across an air gap and charge the vehicle on a predefined path such as a wireless charging lane.[52] Vehicles that could take advantage of this type of wireless charging lane to extend the range of their onboard batteries are already on the road.[52] Some of the issues that are currently preventing these lanes from becoming widespread is the initial cost associated with installing this infrastructure that would benefit only a small percentage of vehicles currently on the road. Another complication is tracking how much power each vehicle was consuming/pulling from the lane. Without a commercial way to monetize this technology, many cities have already turned down plans to include these lanes in their public works spending packages.[52] However this doesn’t mean that cars are unable to utilize large scale wireless charging. The first commercial steps are already being taken with wireless mats that allow electric vehicles to be charged without a corded connection while parked on a charging mat.[52] These large scale projects have come with some issues which include the production of large amounts of heat between the two charging surfaces and may cause a safety issue.[53] Currently companies are designing new heat dispersion methods by which they can combat this excess heat. These companies include most major electric vehicle manufacturers, such as Tesla, Toyota, and BMW.[54]

Examples[edit]

  • EPCOT Universe of Energy is equipped with moving theater «pews,» which take passengers/viewers through the exhibit. They are self-propelled, and inductively recharged when at rest.[55] This exhibit with the recharging technology was in place ca. 2003.
  • Hughes Electronics developed the Magne Charge interface for General Motors. The General Motors EV1 electric car was charged by inserting an inductive charging paddle into a receptacle on the vehicle. General Motors and Toyota agreed on this interface and it was also used in the Chevrolet S-10 EV and Toyota RAV4 EV vehicles.
  • September 2015 Audi Wireless Charging (AWC) presented a 3.6 kW inductive charger[56] during the 66th International Motor Show (IAA) 2015.
  • September 17, 2015 Bombardier-Transportation PRIMOVE presented a 3.6 kW Charger for cars,[57] which was developed at Site in Mannheim Germany.[58]
  • Transport for London has introduced inductive charging in a trial for double-decker buses in London.[59]
  • Magne Charge inductive charging was employed by several types of electric vehicles around 1998, but was discontinued[60] after the California Air Resources Board selected the SAE J1772-2001, or «Avcon», conductive charging interface[61] for electric vehicles in California in June 2001.[62]
  • In 1997 Conductix Wampler started with wireless charging in Germany, In 2002 20 buses started in operation In Turin with 60 kW charging. In 2013 the IPT technology was bought by Proov. In 2008 the technology was already used in the house of the future in Berlin with Mercedes A Class. Later Evatran also began development of Plugless Power, an inductive charging system it claims is the world’s first hands-free, plugless, proximity charging system for Electric Vehicles.[63] With the participation of the local municipality and several businesses, field trials were begun in March 2010. The first system was sold to Google in 2011 for employee use at the Mountain View campus.[64]
  • Evatran began selling the Plugless L2 Wireless charging system to the public in 2014.[65]
  • Volvo Group invested in January 2019 in U.S.-based wireless charging specialist Momentum Dynamics.[66] Volvo and Momentum Dynamics will run a three-year pilot project, starting in 2022, for wireless charging of electric taxis in taxi ranks.[67]
  • BRUSA Elektronik AG, a specialist provider and development company for electric vehicles, offers a wireless charging module named ICS with 3.7 kW power.[68]
  • A partnership between Cabonline, Jaguar, Momentum Dynamics, and Fortum Recharge is launching a wireless charging taxi fleet in Oslo, Norway. The fleet consists of 25 Jaguar I-Pace SUVs equipped with inductive charging pads rated at 50-75 kW. The pads use resonant inductive coupling operating at 85 Hz to improve wireless charging efficiency and range.[69]
  • On February 3, 2022, Hyundai Motor Group developed a wireless charging system for electric vehicles using the principle of magnetic induction.[70] Power is transmitted to the vehicle through resonance between the magnetic pad at the bottom of the charging space and the magnetic pad at the bottom of the vehicle. The transmitted power is stored in the battery through a converter in the vehicle system. It was applied on a trial basis at Genesis Motor EV charging station located in South Korea.[71]

Medical implications[edit]

Wireless charging is making an impact in the medical sector by means of being able to charge implants and sensors long-term that is located beneath the skin. Multiple companies offer rechargeable medical implant (e.g. implantable neurostimulators) which use inductive charging. Researchers have been able to print wireless power transmitting antenna on flexible materials that could be placed under the skin of patients.[53] This could mean that under skin devices that could monitor the patient status could have a longer-term life and provide long observation or monitoring periods that could lead to better diagnosis from doctors. These devices may also make charging devices like pacemakers easier on the patient rather than having an exposed portion of the device pushing through the skin to allow corded charging. This technology would allow a completely implanted device making it safer for the patient. It is unclear if this technology will be approved for use – more research is needed on the safety of these devices.[53] While these flexible polymers are safer than ridged sets of diodes they can be more susceptible to tearing during either placement or removal due to the fragile nature of the antenna that is printed on the plastic material. While these medical based applications seem very specific the high-speed power transfer that is achieved with these flexible antennas is being looked at for larger broader applications.[53]

See also[edit]

  • Charging station
  • Conductive wireless charging
  • Ground-level power supply
  • Wardenclyffe Tower
  • Wireless power transfer
  • Wireless Power Consortium

References[edit]

  1. ^ a b Wireless charging: The state of disunion
  2. ^ a b c d e f g Treffers, Menno (2015). «History, Current Status and Future of the Wireless Power Consortium and the Qi Interface Specification». IEEE Circuits and Systems Magazine. Vol. 15, no. 2. pp. 28–31. doi:10.1109/mcas.2015.2418973.
  3. ^
    US527857A, Maurice Hutin and Maurice Leblanc, «TRANSFORMER SYSTEM FOR ELECTRIC RAILWAYS», published 1894-10-23
  4. ^ Dipert, Brian. «Wireless charging: The state of disunion». Retrieved 12 September 2021.
  5. ^ Regensburger, Brandan; Kumar, Ashish; Sreyam, Sinhar; Khurram, Afridi (2018), «High-Performance 13.56-MHz Large Air-Gap Capacitive Wireless Power Transfer System for Electric Vehicle Charging», 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), IEEE, pp. 1–4, doi:10.1109/COMPEL.2018.8460153, ISBN 978-1-5386-5541-2, S2CID 52285213, retrieved September 12, 2021
  6. ^ a b c Madzharov, Nikolay D.; Nemkov, Valentin S. (January 2017). «Technological inductive power transfer systems». Journal of Electrical Engineering. The Journal of Slovak University of Technology. 68 (3): 235–244. Bibcode:2017JEE….68..235M. doi:10.1515/jee-2017-0035.
  7. ^ “Wireless Power For Medical Devices.” MDDI Online, 7 Aug. 2017, www.mddionline.com/wireless-power-medical-devices.
  8. ^ Condliffe, Jamie. «Do you really need wireless charging roads?». MIT Technology Review. Retrieved 2018-10-04.
  9. ^ Chen, Brian X. (3 October 2018). «Wireless Charging Is Here. So What Is It Good For?». The New York Times. Retrieved 2018-10-04.
  10. ^ «How can an electric toothbrush recharge its batteries when there are no metal contacts between the toothbrush and the base?». HowStuffWorks. Blucora. April 2000. Archived from the original on August 17, 2007. Retrieved August 23, 2007.
  11. ^ US 6972543 «Series resonant inductive charging circuit»
  12. ^ a b c «Wireless charging technology: what you need to know». Android Authority. 16 January 2017.
  13. ^ Bradshaw, Tim. «Review: the joys of smartphone wireless chargers». Financial Times. Archived from the original on September 19, 2019.
  14. ^ Ravenscraft, Eric (August 5, 2020). «Wireless Charging Is a Disaster Waiting to Happen». onezero. Medium. Retrieved 2020-08-27.
  15. ^ a b Pogue, David (2009-06-03). «Another Pre Innovation: The Touchstone Charging Stand». The New York Times. Archived from the original on 2011-09-30. Retrieved 2009-10-15.
  16. ^ Yomogita, Hiroki (November 13, 2008). «Non-contact Charging System Simultaneously Charges Multiple Mobile Devices». Nikkey Technology. Archived from the original on December 5, 2008.
  17. ^ Bernard, Laurent; Pichon, Lionel; Razek, Adel (February 2014). «Evaluation of Electromagnetic Fields in Human Body Exposed to Wireless Inductive Charging System». IEEE Transactions on Magnetics. 50 (2): 1037–1040. Bibcode:2014ITM….50.1037D. doi:10.1109/TMAG.2013.2284245. ISSN 1941-0069. S2CID 22268995. Retrieved February 6, 2022.
  18. ^ «Electromagnetic fields in daily life | RIVM». www.rivm.nl. Retrieved 6 February 2022.
  19. ^ «Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology». SAE International. 23 April 2019.
  20. ^ «Global Industry Leaders Aim To Refine Power in 21st Century as Smart and Wireless with Formation of the Power Matters Alliance». IEEE newsroom. 2012-01-09. Archived from the original on 2013-07-13.
  21. ^ «Former wireless charging rivals join forces as new AirFuel Alliance». airfuel.org. 2015-11-03.
  22. ^ a b c d Alleven, M (2017). «Apple buoys wireless charging industry with WPC membership». FierceWirelessTech. ProQuest 1880513128.
  23. ^ Pocket-lint (2021-07-30). «What is reverse wireless charging?». www.pocket-lint.com. Retrieved 2022-04-21.
  24. ^ «Visteon to unveil wireless charger for your car at CES». mobilemag.com. 2007-01-03. Archived from the original on 2013-06-06.
  25. ^ «Energizer Induction Charger for Wii Preview». IGN.com. 2009-04-28. Archived from the original on 2009-05-02.
  26. ^ Miller, Paul (2009-01-08). «Palm Pre’s wireless charger, the Touchstone». Engadget. Archived from the original on 2017-09-12.
  27. ^ Mokey, Nick (February 25, 2010). «Palm Pre Plus Review». Digital Trends. Archived from the original on March 24, 2010. Retrieved 2010-03-09.
  28. ^ «Apple cancels AirPower product, citing inability to meet its high standards for hardware». TechCrunch. 29 March 2019. Retrieved 2019-03-29.
  29. ^ O’Brien, Terrence (September 5, 2012). «Nokia launches smartphones with Qi Wireless charging and Pillow ‘charging dock’«. Engadget. Archived from the original on September 7, 2012. Retrieved 2012-09-05.
  30. ^ Hadley, Franklin (2007-06-07). «Goodbye wires…». MIT News. Massachusetts Institute of Technology. Archived from the original on 2007-09-03. Retrieved 2007-08-23. MIT team experimentally demonstrates inductive power transfer, potentially useful for powering laptops, cell phones without cords.
  31. ^ Castelvecchi, Davide (November 15, 2006). «Wireless energy may power electronics: Dead cell phone inspired research innovation» (PDF). TechTalk. Massachusetts Institute of Technology. 51 (9). Archived (PDF) from the original on May 2, 2007. Retrieved August 23, 2007.
  32. ^ a b Young Jae Jang (2018), «Survey of the operation and system study on wireless charging electric vehicle systems», Transportation Research Part C (95)
  33. ^ Tom Fogden (September 10, 2021), «Tomorrow’s Wireless Charging Taxis – Mobility Moments With Sprint Power Director Ben Russell», autofutures.tv
  34. ^ Laurent Miguet (April 28, 2022), «Sur les routes de la mobilité électrique», Le Moniteur
  35. ^ Matsuda, Y; Sakamoto, H; Shibuya, H; Murata, S (April 18, 2006), «A non-contact energy transferring system for an electric vehicle-charging system based on recycled products», Journal of Applied Physics, 99 (8): 08R902, Bibcode:2006JAP….99hR902M, doi:10.1063/1.2164408, archived from the original on February 23, 2013, retrieved 2009-04-25
  36. ^ Car Companies’ Head-on Competition In Electric Vehicle Charging, The Auto Channel (website), November 24, 1998, archived from the original on June 2, 2009, retrieved 2009-04-25
  37. ^ Merritt, Rick (October 20, 2010). «Car makers signal interest in wireless charging». EE Times. Archived from the original on October 28, 2010.
  38. ^ Davis, Matt (July 2011). «Mission Critical». Electric & Hybrid, Vehicle Technology International: 68.
  39. ^ «London charges ahead with wireless electric vehicle technology». Source London, Transport for London. November 10, 2011. Archived from the original on 24 April 2012. Retrieved 2011-11-11.
  40. ^ «First Electric Vehicle Wireless Charging Trial Announced for London». Qualcomm Incorporated. November 10, 2011. Retrieved 2011-11-11.
  41. ^ Knox, Annie. «University of Utah electric bus runs on a wireless charge». Salt Lake Tribune. Archived from the original on December 20, 2016. Retrieved December 17, 2016.
  42. ^ «UTA Announces Plans to Add First All-Electric Buses to Fleet». Ride UTA. Utah Transit Authority. Archived from the original on 20 December 2016. Retrieved 17 December 2016.
  43. ^ «Wirelessly charged electric buses set for Milton Keynes». BBC. January 9, 2015. Archived from the original on January 14, 2015. Retrieved 2015-01-08.
  44. ^ Ridden, Paul (August 20, 2009). «Korean electric vehicle solution». New Atlas. Archived from the original on April 5, 2017.
  45. ^ H. Feng, R. Tavakoli, O. C. Onar and Z. Pantic, «Advances in High-Power Wireless Charging Systems: Overview and Design Considerations,» in IEEE Transactions on Transportation Electrification, vol. 6, no. 3, pp. 886-919, Sept. 2020, doi:10.1109/TTE.2020.3012543.
  46. ^ Kwak Yeon-soo (March 24, 2019). «ICT minister nominee accused of wasting research money». The Korea Times.
  47. ^ a b Martin G. H. Gustavsson (March 5, 2021), Research & Innovation Platform for Electric Road Systems (PDF), RISE, ISBN 978-91-89385-08-5
  48. ^ F. Chen, N. Taylor, R. Balieu, and N. Kringos, “Dynamic application of the Inductive Power Transfer (IPT) systems in an electrified road: Dielectric power loss due to pavement materials,” Construction and Building Materials, vol. 147, pp. 9–16, Aug. 2017, doi: 10.1016/j.conbuildmat.2017.04.149
  49. ^ «Inductive charging for electric vehicles while driving: a major ecological challenge», vedecom.fr, April 19, 2022
  50. ^ Amy M. Dean (August 29, 2021), German Co. Works Alongside INDOT to Create Concrete Roads that Can Charge EVs as they Drive Along, International Society for Concrete Pavements
  51. ^ E-Mobility Engineering staff (September 6, 2021), Wireless Charging
  52. ^ a b c d Lin, Chang-Yu; Tsai, Chih-Hung; Lin, Heng_Tien; Chang, Li-Chi; Yeh, Yung-Hui; Pei, Zingway; Wu, Chung-Chih (2011). «High-frequency polymer diode rectifiers for flexible wireless power-transmission sheets». Organic Electronics. 12 (11): 1777–1782. doi:10.1016/j.orgel.2011.07.006.
  53. ^ a b c d Yong Zhi, Cheng; Ji, Jin; Wen Long, Li; Jun Feng, Chen; Bin, Wang; Rong Zhou, Gong (2017). «Indefinite-permeability metamaterial lens with finite size for miniaturized wireless power transfer system. AEUE». International Journal of Electronics and Communications. 12: 1777–1782.
  54. ^ Brown, Marty (2007). Power Sources and Supplies World Class Designs. Boston: Elsevier. pp. 290–300.
  55. ^ «EPCOT’s Universe of Energy Companion Site: Pavilion». progresscityusa.com. Retrieved 2022-04-22.
  56. ^ AUDI (2015-09-17). «Fast charging and Audi wireless charging». AUDI. Archived from the original on 2016-04-05. Retrieved 2015-09-17.
  57. ^ Bombardier Mannheim (2015-09-17). «Experts convinced by PRIMOVE solution for cars». Bombardier. Archived from the original on 2016-04-05. Retrieved 2015-09-17.
  58. ^ Sybille Maas-Müller (2015-03-12). «SITE FACT SHEET Mannheim Germany» (PDF). Bombardier. Archived from the original (PDF) on 2016-04-05. Retrieved 2015-03-12.
  59. ^ «New hybrid bus charging technology trial announced». Transport for London. Archived from the original on 24 August 2016. Retrieved 2 December 2016.
  60. ^ «EV1 Club Home Page». EV1 Club. Archived from the original on 2008-06-03. Retrieved 2007-08-23. GM Pulls the Plug on Inductive Charging: Letter from General Motors Advanced Technology Vehicles (Letter dated 2002-03-15)
  61. ^ «Rulemaking: 2001-06-26 Updated and Informative Digest ZEV Infrastructure and Standardization» (PDF). title 13, California Code of Regulations. California Air Resources Board. 2002-05-13. Archived (PDF) from the original on 2010-06-15. Retrieved 2010-05-23. Standardization of Charging Systems
  62. ^ «ARB Amends ZEV Rule: Standardizes Chargers & Addresses Automaker Mergers» (Press release). California Air Resources Board. 2001-06-28. Archived from the original on 2010-06-16. Retrieved 2010-05-23. the ARB approved the staff proposal to select the conductive charging system used by Ford, Honda and several other manufacturers
  63. ^ Hubbard, Nate (September 18, 2009). «Electric (Car) Company». Wytheville News. Archived from the original on January 11, 2013. Retrieved 2009-09-19.
  64. ^ Thibaut, Kyle (22 March 2011). «Google Is Hooking Up Their Employees With Plugless Power For Their Electric Cars (Video)». TechCrunch.com. Techcrunch. Archived from the original on April 2, 2015. Retrieved March 6, 2015.
  65. ^ Bacque, Peter (January 6, 2014). «Evatran to begin shipping its Plugless electric vehicle charging system». Richmond.com. Retrieved March 6, 2015.
  66. ^ Volvo is interested in wireless charging.
  67. ^ «Volvos nya projekt – ladda elbilar utan sladd», TT / NyTeknik, March 3, 2022
  68. ^ «Das Induktivladesystem ICS115 von BRUSA basiert auf einer weltweit einzigartigen FRAME®-Technologie». brusa.biz. Retrieved 2020-05-28.
  69. ^ «Wireless Charging Tech to Keep EVs on the Go». IEEE Spectrum: Technology, Engineering, and Science News. 27 August 2020. Retrieved 2020-09-29.
  70. ^ «The electric vehicle wireless charging system & automated valet parking system». Hyundai Motor Group TECH. Retrieved 2022-04-29.
  71. ^ HALVORSON, BENGT (2021-08-21). «Exclusive: Genesis GV60 will be first EV to include wireless battery charging». GREEN CAR REPORTS. Retrieved 2022-04-29.

External links[edit]

  • How Inductors Work
  • How Electric Toothbrushes Recharge Using Inductors
  • Wireless Electricity Is Here
  • Wireless charging
  • Electric Bus Rapidly Recharges Using Wireless Charge Plates at Stops Archived 2016-03-07 at the Wayback Machine – Wired
  • Tesla Tower – Inductive charging in year 1900
  • Wireless Qi Charger, DiodeGoneWild on YouTube 16 August 2017

The primary coil in the charger induces a current in the secondary coil in the device being charged.

Inductive charging (also known as wireless charging or cordless charging) is a type of wireless power transfer. It uses electromagnetic induction to provide electricity to portable devices. Inductive charging is also used in vehicles, power tools, electric toothbrushes, and medical devices. The portable equipment can be placed near a charging station or inductive pad without needing to be precisely aligned or make electrical contact with a dock or plug.

Inductive charging is named so because it transfers energy through inductive coupling. First, alternating current passes through an induction coil in the charging station or pad. The moving electric charge creates a magnetic field, which fluctuates in strength because the electric current’s amplitude is fluctuating. This changing magnetic field creates an alternating electric current in the portable device’s induction coil, which in turn passes through a rectifier to convert it to direct current. Finally, the direct current charges a battery or provides operating power.[1][2]

Greater distances between sender and receiver coils can be achieved when the inductive charging system uses resonant inductive coupling, where a capacitor is added to each induction coil to create two LC circuits with a specific resonance frequency. The frequency of the alternating current is matched with the resonance frequency, and the frequency is chosen depending on the distance desired for peak efficiency.[1] Recent improvements to this resonant system include using a movable transmission coil (i.e., mounted on an elevating platform or arm) and the use of other materials for the receiver coil such as silver-plated copper or sometimes aluminum to minimize weight and decrease resistance due to the skin effect.

History[edit]

Induction power transfer was first used in 1894 when M. Hutin and M. Le-Blanc proposed an apparatus and method to power an electric vehicle.[3] However, combustion engines proved more popular, and this technology was forgotten for a time.[2]

In 1972, Professor Don Otto of the University of Auckland proposed a vehicle powered by induction using transmitters in the road and a receiver on the vehicle.[2] In 1977, John E. Trombly was awarded a patent for an «Electromagnetically coupled battery charger.» The patent describes an application to charge headlamp batteries for miners (US 4031449). The first application of inductive charging used in the United States was performed by J.G. Bolger, F.A. Kirsten, and S. Ng in 1978. They made an electric vehicle powered with a system at 180 Hz with 20 kW.[2] In California in the 1980s, a bus was produced, which was powered by inductive charging, and similar work was being done in France and Germany around this time.[2]

In 2006, MIT began using[clarification needed] resonant coupling. They were able to transmit a large amount of power without radiation over a few meters. This proved to be better for commercial needs, and it was a major step for inductive charging.[2][failed verification]

The Wireless Power Consortium (WPC) was established in 2008, and in 2010 they established the Qi standard. In 2012, the Alliance for Wireless Power (A4WP) and the Power Matter Alliance (PMA) were founded. Japan established Broadband Wireless Forum (BWF) in 2009, and they established the Wireless Power Consortium for Practical Applications (WiPoT) in 2013. The Energy Harvesting Consortium (EHC) was also founded in Japan in 2010. Korea established the Korean Wireless Power Forum (KWPF) in 2011.[2] The purpose of these organizations is to create standards for inductive charging. In 2018, The Qi Wireless Standard was adopted for use in military equipment in North Korea, Russia, and Germany

Application areas[edit]

Applications of inductive charging can be divided into two broad categories: Low power and high power:

  • Low power applications are generally supportive of small consumer electronic devices such as cell phones, handheld devices, some computers, and similar devices which normally charge at power levels below 100 watts. Typically, the AC utility frequency of 50 or 60 Hertz is used.[4]
  • High power inductive charging generally refers to inductive charging of batteries at power levels above 1 kilowatt. The most prominent application area for high power inductive charging is in support of electric vehicles, where inductive charging provides an automated and cordless alternative to plug-in charging. Power levels of these devices can range from approximately 1 kilowatt to 300 kilowatts or higher. All high-power inductive charging systems use resonated primary and secondary coils. These systems work in the long wave range with frequencies up to 130 kHz. The use of short wave frequencies can enhance the system’s efficiency and size[5] but would eventually transmit the signal worldwide. High powers raise the concern of electromagnetic compatibility and radio frequency interference.

Advantages[edit]

  • Protected connections – No corrosion when the electronics are enclosed, away from water or oxygen in the atmosphere. Less risk of electrical faults such as short circuits due to insulation failure, especially where connections are made or broken frequently.[6]
  • Low infection risk – For embedded medical devices, the transmission of power via a magnetic field passing through the skin avoids the infection risks associated with wires penetrating the skin.[7]
  • Durability – Without the need to constantly plug and unplug the device, there is significantly less wear and tear on the socket of the device and the attaching cable.[6]
  • Increased convenience and aesthetic quality – No need for cables.
  • Automated high power inductive charging of electric vehicles allows for more frequent charging events and consequently an extension of driving range.
  • Inductive charging systems can be operated automatically without dependence on people to plug and unplug. This results in higher reliability.
  • Automatic operation of inductive charging in roads theoretically allows vehicles to run indefinitely.[8]

Disadvantages[edit]

The following disadvantages have been noted for low-power (i.e., less than 100 watts) inductive charging devices, and may not apply to high-power (i.e., greater than 5 kilowatts) electric vehicle inductive charging systems.[citation needed]

  • Slower charging – Due to the lower efficiency, devices take 15 percent longer to charge when supplied power is the same amount.[9]
  • More expensive – Inductive charging also requires drive electronics and coils in both device and charger, increasing the complexity and cost of manufacturing.[10][11]
  • Inconvenience – When a mobile device is connected to a cable, it can be moved around (albeit in a limited range) and operated while charging. In most implementations of inductive charging, the mobile device must be left on a pad to charge, and thus can’t be moved around or easily operated while charging. With some standards, charging can be maintained at a distance, but only with nothing present between the transmitter and receiver.[6]
  • Compatible standards – Not all devices are compatible with different inductive chargers. However, some devices have started to support multiple standards.

Inefficiency has other costs besides longer charge times. Inductive chargers produce more waste heat than wired chargers, which may negatively impact battery longevity.[13][better source needed] An amateur 2020 analysis of energy use conducted with a Pixel 4 found that a wired charge from 0 to 100 percent consumed 14.26 Wh (watt-hours), while a wireless charging stand used 19.8 Wh, an increase of 39%. Using a generic brand wireless charging pad and mis-aligning the phone produced consumption up to 25.62 Wh, or an 80% increase. The analysis noted that while this is not likely to be noticeable to individuals, it has negative implications for greater adoption of smartphone wireless charging.[14]

Newer approaches reduce transfer losses through the use of ultra thin coils, higher frequencies, and optimized drive electronics. This results in more efficient and compact chargers and receivers, facilitating their integration into mobile devices or batteries with minimal changes required.[15][16] These technologies provide charging times comparable to wired approaches, and they are rapidly finding their way into mobile devices.

Safety[edit]

An increase in high-power inductive charging devices has led to researchers looking into the safety factor of the electromagnetic fields (EMF) put off by larger inductor coils. With the recent interest in the expansion of high power inductive charging with electric cars, an increase in health and safety concerns has arisen. To provide a larger distance of coverage you would in return need a larger coil for your inductor. An electric car with this size conductor would need about 300 kW from a 400 V battery to emit enough charge.[clarification needed] This much exposure to the skin of a human could prove harmful if not met within the right conditions. Exposure limits can be satisfied even when the transmitter coil is very close to the body.[17]

Testing has been done on how organs can be affected by these fields when put under low levels of frequency from these fields. When exposed to various levels of frequencies you can experience dizziness, light flashes, or tingling through nerves. At higher ranges, you can experience heating or even burning of the skin. Most people experience low EMF in everyday life. The most common place to experience these frequencies is with a wireless charger, usually on a nightstand located near the head.[18]

Standards[edit]

Wireless charging station

Detail of the wireless inductive charging device

Standards refer to the different set operating systems with which devices are compatible. There are two main standards: Qi and PMA.[12] The two standards operate very similarly, but they use different transmission frequencies and connection protocols.[12] Because of this, devices compatible with one standard are not necessarily compatible with the other standard. However, there are devices compatible with both standards.

  • Magne Charge, a largely obsolete inductive charging system, also known as J1773, used to charge battery electric vehicles (BEV) formerly made by General Motors.
  • The emerging SAE J2954 standard allows inductive car charging over a pad, with power delivery up to 11 kW.[19]
  • Qi, an interface standard developed by the Wireless Power Consortium for inductive electrical power transfer. At the time of July 2017, it is the most popular standard in the world, with more than 200 million devices supporting this interface.
  • AirFuel Alliance:
    • In January 2012, the IEEE announced the initiation of the Power Matters Alliance (PMA) under the IEEE Standards Association (IEEE-SA) Industry Connections. The alliance is formed to publish a set of standards for inductive power that are safe and energy-efficient, and have smart power management. The PMA will also focus on the creation of an inductive power ecosystem[20]
    • Rezence was an interface standard developed by the Alliance for Wireless Power (A4WP).
    • A4WP and PMA merged into the AirFuel Alliance in 2015.[21]

Electronic devices[edit]

Many manufacturers of smartphones have started adding this technology into their devices, the majority adopting the Qi wireless charging standard. Major manufacturers such as Apple and Samsung produce many models of their phones in high volume with Qi capabilities. The popularity of the Qi standard has driven other manufacturers to adopt this as their own standard.[22] Smartphones have become the driving force of this technology entering consumers’ homes, where many household technologies have been developed to utilize this technology.

Samsung and other companies have begun exploring the idea of «surface charging», building an inductive charging station into an entire surface such as a desk or table.[22] Contrarily, Apple and Anker are pushing a dock-based charging platform. This includes charging pads and disks that have a much smaller footprint. These are geared for consumers who wish to have smaller chargers that would be located in common areas and blend in with the current décor of their home.[22] Due to the adoption of the Qi standard of wireless charging, any of these chargers will work with any phone as long as it is Qi capable.[22]

Another development is reverse wireless charging, which allows a mobile phone to wirelessly discharge its own battery into another device.[23]

Examples[edit]

An iPhone X being charged by a wireless charger

  • Oral-B rechargeable toothbrushes by the Braun company have used inductive charging since the early 1990s.
  • At the Consumer Electronics Show (CES) in January 2007, Visteon unveiled its inductive charging system for in-vehicle use that could charge only specially made cell phones to MP3 players with compatible receivers.[24]
  • April 28, 2009: An Energizer inductive charging station for the Wii remote was reported on IGN.[25]
  • At CES in January 2009, Palm, Inc. announced its new Pre smartphone would be available with an optional inductive charger accessory, the «Touchstone». The charger came with a required special backplate that became standard on the subsequent Pre Plus model announced at CES 2010. This was also featured on later Pixi, Pixi Plus, and Veer 4G smartphones. Upon launch in 2011, the ill-fated HP Touchpad tablet (after HP’s acquisition of Palm Inc.) had a built in touchstone coil that doubled as an antenna for its NFC-like Touch to Share feature.[15][26][27]
  • March 24, 2013: Samsung launched the Galaxy S3, which supports an optionally retrofittable back cover accessory, included in their separate “Wireless Charging Kit”.
  • Nokia announced on September 5, 2012, the Lumia 920 and Lumia 820, which supports respectively integrate inductive charging and inductive charging with an accessory back.
  • March 15, 2013: Samsung launched the Galaxy S4, which supports inductive charging with an accessory back cover.
  • July 26, 2013: Google and ASUS launched the Nexus 7 2013 Edition with integrated inductive charging.
  • September 9, 2014: Apple announced Apple Watch (released on April 24, 2015), which uses wireless inductive charging.
  • September 12, 2017: Apple announced the AirPower wireless charging mat. It was meant to be capable of charging an iPhone, an Apple Watch, and AirPods simultaneously; the product however was never released. On September 12, 2018, Apple removed most mentions of the AirPower from its website and on March 29, 2019, it canceled the product completely.[28]

Qi devices[edit]

Wireless charging pad used to charge devices with the Qi standard

  • Nokia launched two smartphones (the Lumia 820 and Lumia 920) on 5 September 2012, which feature Qi inductive charging.[29]
  • Google and LG launched the Nexus 4 in October 2012 which supports inductive charging using the Qi standard.
  • Motorola Mobility launched its Droid 3 and Droid 4, both optionally support the Qi standard.
  • On November 21, 2012 HTC launched the Droid DNA, which also supports the Qi standard.
  • October 31, 2013 Google and LG launched the Nexus 5, which supports inductive charging with Qi.
  • April 14, 2014 Samsung launched the Galaxy S5 that supports Qi wireless charging with either a wireless charging back or receiver.
  • November 20, 2015 Microsoft launched the Lumia 950 XL and Lumia 950 which support charging with the Qi standard.
  • February 22, 2016 Samsung announced its new flagship Galaxy S7 and S7 Edge which use an interface that is almost the same as Qi. The Samsung Galaxy S8 and Samsung Galaxy Note 8 released in 2017 also feature Qi wireless charging technology.
  • September 12, 2017 Apple announced that the iPhone 8 and iPhone X would feature wireless Qi standard charging.

Furniture[edit]

  • Ikea has a series of wireless charging furniture that supports the Qi standard.

Dual standard[edit]

  • March 3, 2015: Samsung announced its new flagship Galaxy S6 and S6 Edge with wireless inductive charging through both Qi and PMA compatible chargers. All phones in the Samsung Galaxy S and Note lines following the S6 have supported wireless charging.
  • November 6, 2015 BlackBerry released its new flagship BlackBerry Priv, the first BlackBerry phone to support wireless inductive charging through both Qi and PMA compatible chargers.

Research and other[edit]

  • Transcutaneous Energy Transfer (TET) systems in artificial hearts and other surgically implanted devices.
  • In 2006, researchers at the Massachusetts Institute of Technology reported that they had discovered an efficient way to transfer power between coils separated by a few meters. The team, led by Marin Soljačić, theorized that they could extend the distance between the coils by adding resonance to the equation. The MIT inductive power project, called WiTricity, uses a curved coil and capacitive plates.[30][31]
  • In 2012 the Russian private museum Grand Maket Rossiya opened featuring inductive charging on its model car exhibits.
  • As of 2017, Disney Research has been developing and researching room-scale inductive charging for multiple devices.

Transportation[edit]

Electric vehicle wireless power transfer or wireless charging is generally divided into three categories: stationary charging when the vehicle is parked for an extended period of time; dynamic charging when the vehicle is driven on roads or highways; and quasi-dynamic or semi-dynamic charging, when the vehicle moves at low speeds between stops,[32]: 847  for example when a taxi slowly drives at a taxi rank.[33] Inductive charging is not considered a mature dynamic charging technology as it delivers the least power of the three electric road technologies, its receivers lose 20%-25% of the supplied power when installed on trucks, and its health effects have yet to be documented, according to a French government working group on electric roads.[34]

Stationary charging[edit]

In one inductive charging system, one winding is attached to the underside of the car, and the other stays on the floor of the garage.[35] The major advantage of the inductive approach for vehicle charging is that there is no possibility of electric shock, as there are no exposed conductors, although interlocks, special connectors and RCDs (ground fault interruptors, or GFIs) can make conductive coupling nearly as safe. An inductive charging proponent from Toyota contended in 1998 that overall cost differences were minimal, while a conductive charging proponent from Ford contended that conductive charging was more cost efficient.[36]

From 2010 onwards car makers signaled interest in wireless charging as another piece of the digital cockpit. A group was launched in May 2010 by the Consumer Electronics Association to set a baseline for interoperability for chargers. In one sign of the road ahead a General Motors executive is chairing the standards, effort group. Toyota and Ford managers said they also are interested in the technology and the standards effort.[37]

Daimler’s Head of Future Mobility, Professor Herbert Kohler, however, has expressed caution and said the inductive charging for EVs is at least 15 years away (from 2011) and the safety aspects of inductive charging for EVs have yet to be looked into in greater detail. For example, what would happen if someone with a pacemaker is inside the vehicle? Another downside is that the technology requires a precise alignment between the inductive pick-up and the charging facility.[38]

In November 2011, the Mayor of London, Boris Johnson, and Qualcomm announced a trial of 13 wireless charging points and 50 EVs in the Shoreditch area of London’s Tech City, due to be rolled out in early 2012.[39][40] In October 2014, the University of Utah in Salt Lake City, Utah added an electric bus to its mass transit fleet that uses an induction plate at the end of its route to recharge.[41] UTA, the regional public transportation agency, plans to introduce similar buses in 2018.[42] In November 2012 wireless charging was introduced with 3 buses in Utrecht, The Netherlands. January 2015, eight electric buses were introduced to Milton Keynes, England, which uses inductive charging in the road with proov/ipt technology at either end of the journey to prolong overnight charges.,[43] Later bus routes in Bristol, London and Madrid followed.

Dynamic charging[edit]

The first working prototype of an electric vehicle that charges wirelessly while driving, which is known as «dynamic wireless charging» or «dynamic wireless power transfer», is generally regarded to have been developed at the University of California, Berkeley in the 1980s and 1990s. The first commercialized dynamic wireless charging system, Online Electric Vehicle (OLEV), was developed as early as 2009 by researchers at the Korea Advanced Institute of Science and Technology (KAIST).[32]: 848  Vehicles using the system draw power from a power source underneath the road surface, which is an array of inductive rails or coils.[44][45] Commercialization efforts of the technology have not been successful because of high costs,[46] and its main technical challenge is low efficiency.[47]: 57  Dynamic inductive charging infrastructure was found to increase the occurrence of reflective cracks in road surfaces.[47]: 64 [48] As of 2021, companies and organizations such as Vedecom,[49] Magment, Electreon, and IPT are developing dynamic inductive coil charging technologies.[50] IPT is additionally developing a system that uses inductive rails instead of coils, as the current standards which use coils are «extremely expensive» for dynamic charging, according to the CEO of IPT.[51]

Research and development[edit]

Work and experimentation is currently underway in designing this technology to be applied to electric vehicles. This could be implemented by using a predefined path or conductors that would transfer power across an air gap and charge the vehicle on a predefined path such as a wireless charging lane.[52] Vehicles that could take advantage of this type of wireless charging lane to extend the range of their onboard batteries are already on the road.[52] Some of the issues that are currently preventing these lanes from becoming widespread is the initial cost associated with installing this infrastructure that would benefit only a small percentage of vehicles currently on the road. Another complication is tracking how much power each vehicle was consuming/pulling from the lane. Without a commercial way to monetize this technology, many cities have already turned down plans to include these lanes in their public works spending packages.[52] However this doesn’t mean that cars are unable to utilize large scale wireless charging. The first commercial steps are already being taken with wireless mats that allow electric vehicles to be charged without a corded connection while parked on a charging mat.[52] These large scale projects have come with some issues which include the production of large amounts of heat between the two charging surfaces and may cause a safety issue.[53] Currently companies are designing new heat dispersion methods by which they can combat this excess heat. These companies include most major electric vehicle manufacturers, such as Tesla, Toyota, and BMW.[54]

Examples[edit]

  • EPCOT Universe of Energy is equipped with moving theater «pews,» which take passengers/viewers through the exhibit. They are self-propelled, and inductively recharged when at rest.[55] This exhibit with the recharging technology was in place ca. 2003.
  • Hughes Electronics developed the Magne Charge interface for General Motors. The General Motors EV1 electric car was charged by inserting an inductive charging paddle into a receptacle on the vehicle. General Motors and Toyota agreed on this interface and it was also used in the Chevrolet S-10 EV and Toyota RAV4 EV vehicles.
  • September 2015 Audi Wireless Charging (AWC) presented a 3.6 kW inductive charger[56] during the 66th International Motor Show (IAA) 2015.
  • September 17, 2015 Bombardier-Transportation PRIMOVE presented a 3.6 kW Charger for cars,[57] which was developed at Site in Mannheim Germany.[58]
  • Transport for London has introduced inductive charging in a trial for double-decker buses in London.[59]
  • Magne Charge inductive charging was employed by several types of electric vehicles around 1998, but was discontinued[60] after the California Air Resources Board selected the SAE J1772-2001, or «Avcon», conductive charging interface[61] for electric vehicles in California in June 2001.[62]
  • In 1997 Conductix Wampler started with wireless charging in Germany, In 2002 20 buses started in operation In Turin with 60 kW charging. In 2013 the IPT technology was bought by Proov. In 2008 the technology was already used in the house of the future in Berlin with Mercedes A Class. Later Evatran also began development of Plugless Power, an inductive charging system it claims is the world’s first hands-free, plugless, proximity charging system for Electric Vehicles.[63] With the participation of the local municipality and several businesses, field trials were begun in March 2010. The first system was sold to Google in 2011 for employee use at the Mountain View campus.[64]
  • Evatran began selling the Plugless L2 Wireless charging system to the public in 2014.[65]
  • Volvo Group invested in January 2019 in U.S.-based wireless charging specialist Momentum Dynamics.[66] Volvo and Momentum Dynamics will run a three-year pilot project, starting in 2022, for wireless charging of electric taxis in taxi ranks.[67]
  • BRUSA Elektronik AG, a specialist provider and development company for electric vehicles, offers a wireless charging module named ICS with 3.7 kW power.[68]
  • A partnership between Cabonline, Jaguar, Momentum Dynamics, and Fortum Recharge is launching a wireless charging taxi fleet in Oslo, Norway. The fleet consists of 25 Jaguar I-Pace SUVs equipped with inductive charging pads rated at 50-75 kW. The pads use resonant inductive coupling operating at 85 Hz to improve wireless charging efficiency and range.[69]
  • On February 3, 2022, Hyundai Motor Group developed a wireless charging system for electric vehicles using the principle of magnetic induction.[70] Power is transmitted to the vehicle through resonance between the magnetic pad at the bottom of the charging space and the magnetic pad at the bottom of the vehicle. The transmitted power is stored in the battery through a converter in the vehicle system. It was applied on a trial basis at Genesis Motor EV charging station located in South Korea.[71]

Medical implications[edit]

Wireless charging is making an impact in the medical sector by means of being able to charge implants and sensors long-term that is located beneath the skin. Multiple companies offer rechargeable medical implant (e.g. implantable neurostimulators) which use inductive charging. Researchers have been able to print wireless power transmitting antenna on flexible materials that could be placed under the skin of patients.[53] This could mean that under skin devices that could monitor the patient status could have a longer-term life and provide long observation or monitoring periods that could lead to better diagnosis from doctors. These devices may also make charging devices like pacemakers easier on the patient rather than having an exposed portion of the device pushing through the skin to allow corded charging. This technology would allow a completely implanted device making it safer for the patient. It is unclear if this technology will be approved for use – more research is needed on the safety of these devices.[53] While these flexible polymers are safer than ridged sets of diodes they can be more susceptible to tearing during either placement or removal due to the fragile nature of the antenna that is printed on the plastic material. While these medical based applications seem very specific the high-speed power transfer that is achieved with these flexible antennas is being looked at for larger broader applications.[53]

See also[edit]

  • Charging station
  • Conductive wireless charging
  • Ground-level power supply
  • Wardenclyffe Tower
  • Wireless power transfer
  • Wireless Power Consortium

References[edit]

  1. ^ a b Wireless charging: The state of disunion
  2. ^ a b c d e f g Treffers, Menno (2015). «History, Current Status and Future of the Wireless Power Consortium and the Qi Interface Specification». IEEE Circuits and Systems Magazine. Vol. 15, no. 2. pp. 28–31. doi:10.1109/mcas.2015.2418973.
  3. ^
    US527857A, Maurice Hutin and Maurice Leblanc, «TRANSFORMER SYSTEM FOR ELECTRIC RAILWAYS», published 1894-10-23
  4. ^ Dipert, Brian. «Wireless charging: The state of disunion». Retrieved 12 September 2021.
  5. ^ Regensburger, Brandan; Kumar, Ashish; Sreyam, Sinhar; Khurram, Afridi (2018), «High-Performance 13.56-MHz Large Air-Gap Capacitive Wireless Power Transfer System for Electric Vehicle Charging», 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), IEEE, pp. 1–4, doi:10.1109/COMPEL.2018.8460153, ISBN 978-1-5386-5541-2, S2CID 52285213, retrieved September 12, 2021
  6. ^ a b c Madzharov, Nikolay D.; Nemkov, Valentin S. (January 2017). «Technological inductive power transfer systems». Journal of Electrical Engineering. The Journal of Slovak University of Technology. 68 (3): 235–244. Bibcode:2017JEE….68..235M. doi:10.1515/jee-2017-0035.
  7. ^ “Wireless Power For Medical Devices.” MDDI Online, 7 Aug. 2017, www.mddionline.com/wireless-power-medical-devices.
  8. ^ Condliffe, Jamie. «Do you really need wireless charging roads?». MIT Technology Review. Retrieved 2018-10-04.
  9. ^ Chen, Brian X. (3 October 2018). «Wireless Charging Is Here. So What Is It Good For?». The New York Times. Retrieved 2018-10-04.
  10. ^ «How can an electric toothbrush recharge its batteries when there are no metal contacts between the toothbrush and the base?». HowStuffWorks. Blucora. April 2000. Archived from the original on August 17, 2007. Retrieved August 23, 2007.
  11. ^ US 6972543 «Series resonant inductive charging circuit»
  12. ^ a b c «Wireless charging technology: what you need to know». Android Authority. 16 January 2017.
  13. ^ Bradshaw, Tim. «Review: the joys of smartphone wireless chargers». Financial Times. Archived from the original on September 19, 2019.
  14. ^ Ravenscraft, Eric (August 5, 2020). «Wireless Charging Is a Disaster Waiting to Happen». onezero. Medium. Retrieved 2020-08-27.
  15. ^ a b Pogue, David (2009-06-03). «Another Pre Innovation: The Touchstone Charging Stand». The New York Times. Archived from the original on 2011-09-30. Retrieved 2009-10-15.
  16. ^ Yomogita, Hiroki (November 13, 2008). «Non-contact Charging System Simultaneously Charges Multiple Mobile Devices». Nikkey Technology. Archived from the original on December 5, 2008.
  17. ^ Bernard, Laurent; Pichon, Lionel; Razek, Adel (February 2014). «Evaluation of Electromagnetic Fields in Human Body Exposed to Wireless Inductive Charging System». IEEE Transactions on Magnetics. 50 (2): 1037–1040. Bibcode:2014ITM….50.1037D. doi:10.1109/TMAG.2013.2284245. ISSN 1941-0069. S2CID 22268995. Retrieved February 6, 2022.
  18. ^ «Electromagnetic fields in daily life | RIVM». www.rivm.nl. Retrieved 6 February 2022.
  19. ^ «Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology». SAE International. 23 April 2019.
  20. ^ «Global Industry Leaders Aim To Refine Power in 21st Century as Smart and Wireless with Formation of the Power Matters Alliance». IEEE newsroom. 2012-01-09. Archived from the original on 2013-07-13.
  21. ^ «Former wireless charging rivals join forces as new AirFuel Alliance». airfuel.org. 2015-11-03.
  22. ^ a b c d Alleven, M (2017). «Apple buoys wireless charging industry with WPC membership». FierceWirelessTech. ProQuest 1880513128.
  23. ^ Pocket-lint (2021-07-30). «What is reverse wireless charging?». www.pocket-lint.com. Retrieved 2022-04-21.
  24. ^ «Visteon to unveil wireless charger for your car at CES». mobilemag.com. 2007-01-03. Archived from the original on 2013-06-06.
  25. ^ «Energizer Induction Charger for Wii Preview». IGN.com. 2009-04-28. Archived from the original on 2009-05-02.
  26. ^ Miller, Paul (2009-01-08). «Palm Pre’s wireless charger, the Touchstone». Engadget. Archived from the original on 2017-09-12.
  27. ^ Mokey, Nick (February 25, 2010). «Palm Pre Plus Review». Digital Trends. Archived from the original on March 24, 2010. Retrieved 2010-03-09.
  28. ^ «Apple cancels AirPower product, citing inability to meet its high standards for hardware». TechCrunch. 29 March 2019. Retrieved 2019-03-29.
  29. ^ O’Brien, Terrence (September 5, 2012). «Nokia launches smartphones with Qi Wireless charging and Pillow ‘charging dock’«. Engadget. Archived from the original on September 7, 2012. Retrieved 2012-09-05.
  30. ^ Hadley, Franklin (2007-06-07). «Goodbye wires…». MIT News. Massachusetts Institute of Technology. Archived from the original on 2007-09-03. Retrieved 2007-08-23. MIT team experimentally demonstrates inductive power transfer, potentially useful for powering laptops, cell phones without cords.
  31. ^ Castelvecchi, Davide (November 15, 2006). «Wireless energy may power electronics: Dead cell phone inspired research innovation» (PDF). TechTalk. Massachusetts Institute of Technology. 51 (9). Archived (PDF) from the original on May 2, 2007. Retrieved August 23, 2007.
  32. ^ a b Young Jae Jang (2018), «Survey of the operation and system study on wireless charging electric vehicle systems», Transportation Research Part C (95)
  33. ^ Tom Fogden (September 10, 2021), «Tomorrow’s Wireless Charging Taxis – Mobility Moments With Sprint Power Director Ben Russell», autofutures.tv
  34. ^ Laurent Miguet (April 28, 2022), «Sur les routes de la mobilité électrique», Le Moniteur
  35. ^ Matsuda, Y; Sakamoto, H; Shibuya, H; Murata, S (April 18, 2006), «A non-contact energy transferring system for an electric vehicle-charging system based on recycled products», Journal of Applied Physics, 99 (8): 08R902, Bibcode:2006JAP….99hR902M, doi:10.1063/1.2164408, archived from the original on February 23, 2013, retrieved 2009-04-25
  36. ^ Car Companies’ Head-on Competition In Electric Vehicle Charging, The Auto Channel (website), November 24, 1998, archived from the original on June 2, 2009, retrieved 2009-04-25
  37. ^ Merritt, Rick (October 20, 2010). «Car makers signal interest in wireless charging». EE Times. Archived from the original on October 28, 2010.
  38. ^ Davis, Matt (July 2011). «Mission Critical». Electric & Hybrid, Vehicle Technology International: 68.
  39. ^ «London charges ahead with wireless electric vehicle technology». Source London, Transport for London. November 10, 2011. Archived from the original on 24 April 2012. Retrieved 2011-11-11.
  40. ^ «First Electric Vehicle Wireless Charging Trial Announced for London». Qualcomm Incorporated. November 10, 2011. Retrieved 2011-11-11.
  41. ^ Knox, Annie. «University of Utah electric bus runs on a wireless charge». Salt Lake Tribune. Archived from the original on December 20, 2016. Retrieved December 17, 2016.
  42. ^ «UTA Announces Plans to Add First All-Electric Buses to Fleet». Ride UTA. Utah Transit Authority. Archived from the original on 20 December 2016. Retrieved 17 December 2016.
  43. ^ «Wirelessly charged electric buses set for Milton Keynes». BBC. January 9, 2015. Archived from the original on January 14, 2015. Retrieved 2015-01-08.
  44. ^ Ridden, Paul (August 20, 2009). «Korean electric vehicle solution». New Atlas. Archived from the original on April 5, 2017.
  45. ^ H. Feng, R. Tavakoli, O. C. Onar and Z. Pantic, «Advances in High-Power Wireless Charging Systems: Overview and Design Considerations,» in IEEE Transactions on Transportation Electrification, vol. 6, no. 3, pp. 886-919, Sept. 2020, doi:10.1109/TTE.2020.3012543.
  46. ^ Kwak Yeon-soo (March 24, 2019). «ICT minister nominee accused of wasting research money». The Korea Times.
  47. ^ a b Martin G. H. Gustavsson (March 5, 2021), Research & Innovation Platform for Electric Road Systems (PDF), RISE, ISBN 978-91-89385-08-5
  48. ^ F. Chen, N. Taylor, R. Balieu, and N. Kringos, “Dynamic application of the Inductive Power Transfer (IPT) systems in an electrified road: Dielectric power loss due to pavement materials,” Construction and Building Materials, vol. 147, pp. 9–16, Aug. 2017, doi: 10.1016/j.conbuildmat.2017.04.149
  49. ^ «Inductive charging for electric vehicles while driving: a major ecological challenge», vedecom.fr, April 19, 2022
  50. ^ Amy M. Dean (August 29, 2021), German Co. Works Alongside INDOT to Create Concrete Roads that Can Charge EVs as they Drive Along, International Society for Concrete Pavements
  51. ^ E-Mobility Engineering staff (September 6, 2021), Wireless Charging
  52. ^ a b c d Lin, Chang-Yu; Tsai, Chih-Hung; Lin, Heng_Tien; Chang, Li-Chi; Yeh, Yung-Hui; Pei, Zingway; Wu, Chung-Chih (2011). «High-frequency polymer diode rectifiers for flexible wireless power-transmission sheets». Organic Electronics. 12 (11): 1777–1782. doi:10.1016/j.orgel.2011.07.006.
  53. ^ a b c d Yong Zhi, Cheng; Ji, Jin; Wen Long, Li; Jun Feng, Chen; Bin, Wang; Rong Zhou, Gong (2017). «Indefinite-permeability metamaterial lens with finite size for miniaturized wireless power transfer system. AEUE». International Journal of Electronics and Communications. 12: 1777–1782.
  54. ^ Brown, Marty (2007). Power Sources and Supplies World Class Designs. Boston: Elsevier. pp. 290–300.
  55. ^ «EPCOT’s Universe of Energy Companion Site: Pavilion». progresscityusa.com. Retrieved 2022-04-22.
  56. ^ AUDI (2015-09-17). «Fast charging and Audi wireless charging». AUDI. Archived from the original on 2016-04-05. Retrieved 2015-09-17.
  57. ^ Bombardier Mannheim (2015-09-17). «Experts convinced by PRIMOVE solution for cars». Bombardier. Archived from the original on 2016-04-05. Retrieved 2015-09-17.
  58. ^ Sybille Maas-Müller (2015-03-12). «SITE FACT SHEET Mannheim Germany» (PDF). Bombardier. Archived from the original (PDF) on 2016-04-05. Retrieved 2015-03-12.
  59. ^ «New hybrid bus charging technology trial announced». Transport for London. Archived from the original on 24 August 2016. Retrieved 2 December 2016.
  60. ^ «EV1 Club Home Page». EV1 Club. Archived from the original on 2008-06-03. Retrieved 2007-08-23. GM Pulls the Plug on Inductive Charging: Letter from General Motors Advanced Technology Vehicles (Letter dated 2002-03-15)
  61. ^ «Rulemaking: 2001-06-26 Updated and Informative Digest ZEV Infrastructure and Standardization» (PDF). title 13, California Code of Regulations. California Air Resources Board. 2002-05-13. Archived (PDF) from the original on 2010-06-15. Retrieved 2010-05-23. Standardization of Charging Systems
  62. ^ «ARB Amends ZEV Rule: Standardizes Chargers & Addresses Automaker Mergers» (Press release). California Air Resources Board. 2001-06-28. Archived from the original on 2010-06-16. Retrieved 2010-05-23. the ARB approved the staff proposal to select the conductive charging system used by Ford, Honda and several other manufacturers
  63. ^ Hubbard, Nate (September 18, 2009). «Electric (Car) Company». Wytheville News. Archived from the original on January 11, 2013. Retrieved 2009-09-19.
  64. ^ Thibaut, Kyle (22 March 2011). «Google Is Hooking Up Their Employees With Plugless Power For Their Electric Cars (Video)». TechCrunch.com. Techcrunch. Archived from the original on April 2, 2015. Retrieved March 6, 2015.
  65. ^ Bacque, Peter (January 6, 2014). «Evatran to begin shipping its Plugless electric vehicle charging system». Richmond.com. Retrieved March 6, 2015.
  66. ^ Volvo is interested in wireless charging.
  67. ^ «Volvos nya projekt – ladda elbilar utan sladd», TT / NyTeknik, March 3, 2022
  68. ^ «Das Induktivladesystem ICS115 von BRUSA basiert auf einer weltweit einzigartigen FRAME®-Technologie». brusa.biz. Retrieved 2020-05-28.
  69. ^ «Wireless Charging Tech to Keep EVs on the Go». IEEE Spectrum: Technology, Engineering, and Science News. 27 August 2020. Retrieved 2020-09-29.
  70. ^ «The electric vehicle wireless charging system & automated valet parking system». Hyundai Motor Group TECH. Retrieved 2022-04-29.
  71. ^ HALVORSON, BENGT (2021-08-21). «Exclusive: Genesis GV60 will be first EV to include wireless battery charging». GREEN CAR REPORTS. Retrieved 2022-04-29.

External links[edit]

  • How Inductors Work
  • How Electric Toothbrushes Recharge Using Inductors
  • Wireless Electricity Is Here
  • Wireless charging
  • Electric Bus Rapidly Recharges Using Wireless Charge Plates at Stops Archived 2016-03-07 at the Wayback Machine – Wired
  • Tesla Tower – Inductive charging in year 1900
  • Wireless Qi Charger, DiodeGoneWild on YouTube 16 August 2017

Как работает беспроводная зарядка?

Беспроводная зарядка основана на принципе электромагнитной индукции — стандарт, который описывает эту технологию, называется Qi. Он разработан Консорциумом беспроводной электромагнитной энергии (Wireless Power Consortium, WPC) и позволяет передавать энергию на расстояние до 4 см.

Зарядная станция подключается к сети и генерирует энергию в электромагнитное поле с помощью встроенной катушки индуктивности. Для приема энергии у телефона должен быть специальный приемник — Qi-ресивер. Гаджет достаточно положить на платформу, и он начнет заряжаться. Также большую роль играет материал корпуса смартфона: спинки энергопроизводящих моделей обычно делают из стекла или керамики.

Как узнать, поддерживает ли телефон беспроводную зарядку?

Самый простой способ — посмотреть на цену смартфона. Если это бюджетная модель, скорее всего, она заряжается только стандартным методом — через USB-кабель. А вот если у вас в руках актуальный или прошлогодний флагман — скорее всего, эти телефоны можно заряжать беспроводной зарядкой.

Чтобы точно выяснить, поддерживает ли конкретная модель стандарт Qi, перейдите на официальный сайт его разработчиков. Во вкладке Products вы увидите список всех зарегистрированных моделей с беспроводной зарядкой.

Какие телефоны можно заряжать беспроводной зарядкой

Можете сразу набрать название вашего смартфона в строке поиска, а можете прокрутить таблицу и поискать нужный гаджет вручную — модели отсортированы по дате регистрации: новые — выше, старые — в конце списка. Гаджетов с поддержкой Qi очень много, к тому же в общей таблице указаны не только смартфоны, но и аксессуары для зарядки. Если не получается найти свой телефон, введите в поиске только имя производителя — так вы значительно сократите список.

Какие телефоны поддерживают беспроводную зарядку

Многие топовые смартфоны поддерживают беспроводную зарядку, в том числе флагманы прошлых лет. У Xiaomi первым гаджетом с модулем Qi был Mi Mix 2S, после него уже вышли Mi Mix 3 и Mi 9, которые тоже умеют быстро заряжаться без проводов.

У Huawei первопроходцем стал Mate 20 Pro — кстати, он также может использовать реверсивную зарядку, чтобы поделиться энергией с аналогичными смартфонами. А вот у дочерней компании Honor все еще нет моделей с Qi — возможно, они появятся в 2019 году.Какие телефоны можно заряжать беспроводной зарядкойАйфоны поддерживают беспроводную зарядку с 2017 года, с того момента, как появился iPhone 8. Восьмой, десятый и самые последние айфоны хоть и работают с Qi, но быстрее заряжаются через кабель.

У Samsung поддержка стандарта Qi появилась в 2016 году в модели Galaxy S7. Все последующие устройства линейки Galaxy S также можно зарядить от компактной беспроводной станции.

Как добавить в смартфон беспроводную зарядку

Если вы не нашли свой гаджет в списке моделей с поддержкой Qi, но очень хотите заряжать его без проводов, можете приобрести чехол со встроенным приемником или отдельный модуль Qi. Чехлы для беспроводной зарядки в большом количестве продаются на AliЕxpress и подобных китайских сайтах. Цена вопроса — около 600 рублей. В оффлайне Qi Case тоже можно купить, но гораздо дороже.

Какие телефоны можно заряжать беспроводной зарядкой

Какие телефоны можно заряжать беспроводной зарядкой

Более бюджетное решение — покупка Qi-ресивера. Если заказывать из Китая, он обойдется примерно в 100 рублей. Это устройство представляет собой небольшую катушку индуктивности, которая устанавливается в блок зарядки. Есть два типа таких катушек: первые надо подключить напрямую к аккумулятору, а вторые — к зарядному порту. Популярнее, конечно, второй тип — эти ресиверы можно аккуратно спрятать под чехлом и установить без разборки смартфона.

Беспроводная зарядка: плюсы и минусы

Главное преимущество беспроводной зарядки отражено в ее названии — очень удобно заряжать смартфон, просто положив его на зарядную станцию, не подключая к нему никаких кабелей и не путаясь в проводах.

Что касается недостатков, то беспроводная зарядка у большинства моделей все еще гораздо медленнее, чем проводная. Недавно Xiaomi представила первую в мире беспроводную зарядную станцию мощностью 20W. Новый Mi 9 полностью заряжается от Mi Wireless Charging Pad всего за полтора часа — а это уже на уровне проводных устройств.

Читайте также:

  • Беспроводные зарядки: какие подойдут вашему смартфону?
  • Как увеличить время работы смартфона: 10 лайфхаков от CHIP

В наши дни беспроводная зарядка стала довольно распространенной. От столов в кофейнях до приборных панелей автомобилей и даже ковриков для мыши — вы найдете зарядные устройства практически везде. А если у вас есть совместимое устройство, то все, что вам нужно сделать, это поместить его в отмеченное место, и магическим образом начнется зарядка. Я уже давно начал ей пользоваться, и для меня при выборе нового телефона обязательное условие, чтобы в нем была беспроводная зарядка. Правда, как показывает практика, несмотря на ее популяризацию и распространение, многие еще не знакомы с этой технологий. Сейчас попробуем рассказать о ней более подробно.

Что такое беспроводная зарядка. Как она работает и надо ли ей пользоваться. Зарядка без проводов удобна. Но что это такое и стоит ли эти пользоваться? Фото.

Зарядка без проводов удобна. Но что это такое и стоит ли эти пользоваться?

Содержание

  • 1 Как работает беспроводная зарядка
  • 2 Все ли беспроводные зарядки одинаковые
  • 3 Зарядка QI
  • 4 Чем зарядка MagSafe отличается от остальных
  • 5 Как быстрее всего зарядить телефон
  • 6 Зарядка гаджетов от телефона
  • 7 Можно ли зарядить телефон от другого телефона

Как работает беспроводная зарядка

Как бы удобно это ни было, не все беспроводные зарядные устройства устроены одинаково. И хотя, несомненно, заманчиво избавиться от проводов навсегда, есть некоторые предостережения, связанные с этой технологией.

Беспроводная зарядка основана на довольно простом принципе электромагнитной индукции. В двух словах это представляет из себя пропускание переменного тока через медную катушку, которая создает магнитное поле в непосредственной близости от себя. Если вы поместите другую катушку в зону досягаемости поля, то принимающая катушка будет ”вырабатывать” ток.

Спор на тему: почему нужно пользоваться беспроводными зарядками и почему лучше этого не делать

В контексте беспроводной зарядки первичная катушка находится внутри зарядного устройства и получает питание от розетки. Вторичная катушка находится внутри вашего смартфона и получает индуцированный ток полностью без проводов.

Именно поэтому устройства с беспроводной зарядкой называются именно беспроводными, хотя формально провода все же есть (от розетки до зарядной станции). Тут есть одно важное ограничение — беспроводная зарядка работает только через стекло или пластик. Алюминиевый корпус экранирует передачу и зарядка без проводов невозможна. Исключением является Google Pixel 5, но там создатели пошли на хитрость. Они вырезали в задней стенке отверстие, в которое вставили катушку, и нанесли на него полимер. Так кажется, что стенка полностью алюминиевая, но это ложное ощущение.

Как работает беспроводная зарядка. Есть и такие, универсальные способы зарядки аккумулятора. Фото.

Есть и такие, универсальные способы зарядки аккумулятора.

Все ли беспроводные зарядки одинаковые

Гаджеты и зарядные устройства для них должны взаимодействовать друг с другом, чтобы определять скорость зарядки и другие параметры. В далеком прошлом существовало несколько конкурирующих стандартов беспроводной зарядки. Однако на сегодняшний день доминирующим стал стандарт Qi (читается ”чи”), разработанный консорциумом Wireless Power Consortium. Большинство беспроводных зарядных устройств поддерживают стандарт Qi, за вычетом нескольких исключений, о которых мы поговорим ниже.

Общий стандарт выгоден, потому что покупатель не должен задумываться о совместимости. Достаточно того, что в принципе есть поддержка беспроводной зарядки. Так получается отвязаться от конкретных брендов. Это как USB в мире зарядок — единый стандарт.

Все ли беспроводные зарядки одинаковые. Как USB стал единым стандартом, так им же является и QI. Фото.

Как USB стал единым стандартом, так им же является и QI

Зарядка QI

Qi все делают по определенному стандарту, который включает в себя рекомендации по многочисленным аспектам процесса зарядки, таким как зона зарядки, пределы температуры и обнаружение объектов. Последнее особенно важно, потому что если вы случайно оставите металлические предметы, такие как монеты, в зоне поля, они могут быстро нагреться. Стандарт помогает предотвратить это, делая аксессуар более безопасным. Зарядные устройства будут генерировать поле только при обнаружении Qi-совместимого гаджета.

Впрочем, некоторые производители предлагают свои стандарты беспроводной зарядки, чтобы выйти за границы ограничения Qi по мощности. OnePlus, например, предлагает беспроводную Warp Charge 50. Она полностью восстанавливает батарею OnePlus 9 Pro менее чем за 40 минут. AirVooc от Oppo еще больше ускоряет этот процесс, предлагая 65 Вт. Одна общая черта этих реализаций заключается в том, что они требуют использования специального беспроводного зарядного устройства. Впрочем, с обычными Qi-зарядками они тоже совместимы, но скорость будет более низкой.

Что делать, если не заряжаются беспроводные наушники.

Чем зарядка MagSafe отличается от остальных

Хотя решение Apple для быстрой беспроводной зарядки MagSafe может показаться проприетарным продуктом, на самом деле это не так. Зарядная шайба MagSafe просто содержит кольцо магнитов, окружающих обычную катушку стандарта Qi. Все, что оно делает, это упрощает совмещение катушек для более высокой скорости зарядки. В итоге мощность зарядки получается максимальной для стандарта — 15 Вт.

Чем зарядка MagSafe отличается от остальных. Зарядка MagSafe магнитится к задней стенке для более точного позиционирования. Фото.

Зарядка MagSafe магнитится к задней стенке для более точного позиционирования.

Но есть у Apple и действительно проприетарная зарядка. Она используется для Apple Watch. А AirPods могут заряжаться от обычной Qi, как и Samsung Galaxy Watch 4. То есть, как видим, размер корпуса и уменьшение размера катушки не является тем, что помешает пользоваться беспроводной зарядкой. Многие полагают, что в Apple Watch может использоваться программное ограничение на использование зарядок.

С точки зрения удобства беспроводные зарядные устройства почти всегда выходят на первое место. Однако часто бывает наоборот, когда вы смотрите на такие параметры, как скорость, эффективность и тепловыделение.

Почему телефон сильно греется. Вот причины.

Как быстрее всего зарядить телефон

Мы уже говорили, что стандарт Qi допускает максимум 15 Вт. Однако многие производители смартфонов перешли на 33 Вт, 65 Вт и даже 160 Вт для проводной зарядки. Это означает, что беспроводная зарядка гораздо хуже подходит для быстрого пополнения аккумулятора.

Что касается эффективности, то исследования показали, что беспроводная зарядка потребляет примерно на 50% больше энергии от розетки по сравнению с подключением телефона проводом. Вам просто придется брать с собой более мощный и громоздки блок питания. А если вам интересно, куда уходит энергия, то она просто теряется в виде тепла. И это еще одна серьезная проблема, с которой приходится сталкиваться производителям.

Как быстрее всего зарядить телефон. Зарядка проводом — классика. Фото.

Зарядка проводом — классика.

Чрезмерное тепло во время зарядки — это плохо, потому что оно может сократить срок службы аккумулятора телефона. Для этого крайне важно, чтобы смартфоны и беспроводные зарядные устройства имели встроенные механизмы защиты от перегрева. Многие производители, такие как Samsung и OnePlus, даже добавляют в свои зарядные устройства охлаждающий вентилятор. Однако он может быть довольно шумным, поэтому проводное решение в любом случае может быть предпочтительнее.

В общем, именно из-за этих недостатков беспроводная зарядка еще не нашла применение в других отраслях, таких как электромобили, где токи существенно выше. Когда найдет, мы обязательно расскажем об этом в нашем новостном Telegram-канале.

A еще у нас есть свой Яндекс Дзен. В нем публикуется много материалов, которых нет на сайте.

Зарядка гаджетов от телефона

Обратная беспроводная зарядка — относительно новая функция, предлагаемая в основном на топовых флагманских смартфонах, таких как Google Pixel и Samsung серии Galaxy S. Принцип электромагнитной индукции остается прежним, за исключением того, что вместо этого смартфон, который до этого сам заряжался от специальной станции, превращается в первичную катушку. Проще говоря, телефон использует энергию собственной батареи для создания магнитного поля. Затем на поверхность телефона можно поместить другие устройства, чтобы начать беспроводную зарядку привычным нам способом.

Обратная беспроводная зарядка позволяет заряжать дополнительные устройства, такие как наушники, часы и даже целые телефоны, на задней панели вашего смартфона.

Зарядка гаджетов от телефона. Зарядка по проводу будет быстрее беспроводной.. Фото.

Зарядка по проводу будет быстрее беспроводной..

Можно ли зарядить телефон от другого телефона

Имейте в виду, что те же недостатки, что мы обсуждали выше, есть и здесь. Обратная беспроводная зарядка довольно неэффективна, поэтому вы разряжаете значительную часть аккумулятора своего смартфона, чтобы зарядить часы или наушники. А значит, способ скорее подойдет на случай экстренного. Поэтому многие производители предлагают использовать эту функцию, когда смартфон подключен к сети. Это фактически устраняет необходимость носить с собой отдельную зарядку для небольших устройств.

Точно так же технически возможно зарядить другой смартфон с помощью обратной беспроводной зарядки, но низкая эффективность и вероятность перегрева делают его полезным только в крайних случаях. Еще одно предостережение, которое следует учитывать, заключается в том, что скорость обратной зарядки часто весьма ограничена — в некоторых случаях она всего 5 Вт.

Это все, что надо знать о беспроводной зарядке. Расскажите в Telegram-чате, что вы думаете о ней и готовы ли ей пользоваться?

Здравствуйте, уважаемые читатели. Уверен, вы хотя бы отдаленно, но слышали о том, что телефон можно зарядить, не используя проводов. Наверняка многие отмахнулись, подумав, что такая современная технология только в очень дорогих устройствах. А вот и нет.

Поддерживает беспроводную зарядку практически любой телефон, правда, с некоторыми оговорками. Брендовые смартфоны уже из «коробки» могут получать энергию по воздуху, для остальных же придется докупить специальные аксессуары. Сегодня вы не только узнаете, поддерживает ли беспроводную зарядку ваш мобильный, но и, как отказаться от проводов, если ваше устройство устарело.

Беспроводная зарядка – что это?

Koolpad Qi

Фото: Koolpad Qi

Прежде, чем рассмотреть модели смартфонов, которые оснащены возможностью беспроводной зарядки, необходимо понять ее суть. На самом деле, беспроводная передача энергии не такая уж сложная технология, как кажется на первый взгляд. В техническом плане беспроводная зарядка представлена двумя катушками из меди.

Одна играет роль передатчика энергии, которую получает из электрической сети. Устанавливается катушка в док-станцию (площадку, на которую впоследствии кладется смартфон). Вторая катушка – приемник. Ею оснащаются устройства, которым необходима энергия, например мобильные телефоны. Как правило, приемник скрыт от глаз внутри корпуса, если он только не внешний.

Энергию аккумулятор устройства получает благодаря магнитному полю, которое возникает, когда приемник оказывается в поле действия передатчика (обычно около 4 сантиметров). Этот принцип справедлив для стандарта Qi, который наиболее активно применяется в беспроводных зарядках носимых устройств.

Смартфон со значком Qi поддерживает беспроводную зарядку

Стандарт Qi

Стандарт Qi разработан Консорциумом беспроводной электромагнитной энергии для передачи энергии на расстоянии до 4 сантиметров. Ученые, создавая стандарт, пользовались наработками, которые уже были сделаны многими другими специалистами.

Вообще, идея передавать энергию на расстоянии появилась два столетия назад, когда Мари Ампер открыл закон, доказывающий, что электрический ток вырабатывает магнитное поле. Немалый вклад сделан Николой Тесла, который, чтобы продемонстрировать беспроводную передачу энергии построил башню. В последующем многие организации и ученые занимались изучением технологий, но большой процент опытов заканчивался на ранних стадиях.

До нынешнего века передача энергии без проводов так и оставалась на уровне испытаний. Пока технология не стала интересна крупным производителям портативной электроники. В 2009 году, после создания стандарта Qi, который стал максимально пригодным для использования в носимой технике, ряд компаний стали разрабатывать концепты с поддержкой беспроводной зарядки.

Толчком для фирм стало и то, что стандарт был бесплатен и доступен. Сегодня практически каждый флагманский смартфон может похвастаться наличием технологии, а бюджетный – аксессуарами, которые делают функцию рабочей и для них них.

Ни один десяток компаний работает над другими технологиями передачи энергии, помимо электромагнитной индукции. Например, студенты университета Пенсильвании в 2011 году провели опыт, в котором доказали, что энергию можно передавать посредством ультразвука. А в 1945 году советский ученый Семён Тетельбаум в статье описал возможность передачи энергии с помощью микроволнового излучения. Впоследствии эта технология активно развивалась. Энергию передавать можно с лучом лазера, что в опытах доказала НАСА. Никола Тесла, известный своими экспериментами с электричеством, и вовсе считал, что можно создать всемирную беспроводную систему, которая избавит людей от линий электропередач.

Список смартфонов, со встроенной поддержкой беспроводной зарядки (2019)

поддерживает беспроводную зарядку

Что ж, с теорией и историей беспроводной передачи энергии вы теперь знакомы, самое время перейти к устройствам, которые поддерживают технологию. Говоря о поддержке, относим в список устройства, которые получили приемник уже на заводе (можно установить его и отдельно).

На сегодняшний день беспроводную зарядку по стандарту Qi получило более 80 смартфонов, не считая ряда моделей смарт-часов и прочих устройств. И эта цифра с завидной скоростью растет. Постараюсь перечислить максимум моделей – точный список, который регулярно обновляется, представлен на портале Qi.

Итак, беспроводная зарядка интегрирована в моделях (список обновлен в январе 2019 года):

Apple

  • iPhone 8
  • iPhone 8 Plus
  • iPhone X
  • iPhone Xs
  • iPhone Xs Max
  • iPhone Xr

Asus

  • Asus PadFone S

BlackBerry

  • BlackBerry Passport
  • BlackBerry PRIV
  • BlackBerry Z30

CASIO

  • CASIO G’z One Commando

Caterpillar

  • Cat S50
  • Cat S50C

DeWalt

  • Dewalt MD501
  • Dewalt MIL810G

Energy Sistem

  • Energy Phone Pro Qi

Fujitsu

  • Fujitsu Arrows F-09D
  • Fujitsu Arrows Kiss F-03D
  • Fujitsu Arrows Kiss F-03E
  • Fujitsu Arrows X F-10D

Google

  • Google Nexus 4
  • Google Nexus 5
  • Google Nexus 6
  • Google Pixel 3
  • Google Pixel 3 XL

HP

  • HP Elite X3

HTC

  • HTC Droid DNA
  • HTC Windows Phone 8X

Huawei

  • Huawei Mate20 Pro

Kyocera

  • Kyocera Brigadier
  • Kyocera DuraForce
  • Kyocera Hydro Elite
  • Kyocera Torque G02
  • Kyocera Torque KC-S701
  • Kyocera Urbano L01
  • Kyocera Urbano L03

LG

  • LG G2
  • LG G3
  • LG G6 ¹
  • LG G6 Plus ¹
  • LG G7
  • LG G7 ThinQ
  • LG Lucid 2
  • LG Lucid 3
  • LG Optimus F5
  • LG Optimus G Pro
  • LG Optimus It L-05E
  • LG Spectrum 2
  • LG Vu 2
  • LG Vu 3
  • LG V30
  • LG V30 Plus

M.T.T.

  • M.T.T. Master 4G

Microsoft

  • Microsoft Lumia 950
  • Microsoft Lumia 950 Dual Sim
  • Microsoft Lumia 950 XL
  • Microsoft Lumia 950 XL Dual Sim

Mlais

  • Mlais MX69W

Motorola

  • Motorola Droid Maxx
  • Motorola Droid Mini
  • Motorola Droid Turbo
  • Motorola Droid Turbo 2
  • Motorola Moto Maxx
  • Motorola Moto X Force

mPhone

  • mPhone 8

NEC

  • NEC Medias PP N-01D
  • NEC Medias X N-04E

Nokia

  • Nokia Lumia 1520
  • Nokia Lumia 735
  • Nokia Lumia 830
  • Nokia Lumia 920
  • Nokia Lumia 928
  • Nokia Lumia 929 (Icon)
  • Nokia Lumia 930
  • Nokia 8 Sirocco

Oukitel

  • Oukitel U23

Panasonic

  • Panasonic Eluga P P-03E
  • Panasonic Eluga V P-06D
  • Panasonic Eluga X P-02E
  • Panasonic Eluga X1
  • Panasonic Eluga X1 Pro

Philips

  • Philips X723

Razor

  • Razor Phone 2

RugGear

  • RugGear RG730

Samsung

  • Samsung Galaxy S6
  • Samsung Galaxy S6 Active
  • Samsung Galaxy S6 Edge
  • Samsung Galaxy S6 Edge Plus
  • Samsung Galaxy S7
  • Samsung Galaxy S7 Active
  • Samsung Galaxy S7 Edge
  • Samsung Galaxy S8
  • Samsung Galaxy S8 Active
  • Samsung Galaxy S8 Plus
  • Samsung Galaxy S9
  • Samsung Galaxy S9 Plus
  • Samsung Galaxy Note 8
  • Samsung Galaxy Note 9
  • Samsung Leader 8
  • Samsung W2016

Saygus

  • Saygus V SQUARED

Sharp

  • Sharp Aquos EX SH-04E
  • Sharp Aquos SH-07D
  • Sharp Aquos SH-13C
  • Sharp Aquos Slider SH-02D
  • Sharp Aquos Zeta SH-06E
  • Sharp Aquos Zeta SH-09D
  • Sharp Q-Pot SH-04D
  • Sharp SH-05D

Sony

  • Sony Xperia Z3V
  • Sony Xperia Z4V
  • Sony Xperia XZ2
  • Sony Xperia XZ2 Premium
  • Sony Xperia XZ3

Techdy

  • Techdy Basic Bear
  • Techdy Bear Pro

Vertu

  • Vertu Aster
  • Vertu Signature Touch

Xiaomi

  • Mi MIX 2S
  • Mi Mix 3

YotaPhone

  • Yotaphone 2

ZTE

  • ZTE Telstra Tough Max
  • ZTE Axon 9 Pro

Это не полный список – есть еще ряд моделей от менее известных фирм. Не удивляйтесь, что нет в списке популярного iPhone. Это не ошибка. Официально Apple до сих пор не интегрировала беспроводную зарядку в свою продукцию. Но выход есть, о чем чуть ниже.

Читайте так же: Беспроводная зарядка для iPhone — не миф! Обзор лучших и стильных

Для моделей смартфонов, представленных в списке, требуется лишь наличие платформы, которая необходима для передачи энергии. Как правило, она включена в комплект поставки мобильного устройства, но не всегда. В этом случае придется док-станцию докупать отдельно.

Обычно, производитель выпускает фирменную модель, но можно использовать и другие – особой привязки смартфона к конкретной площадке нет. Можно и вовсе заказать дешевую «noname» док-станцию, которая в большинстве случаев удовлетворит запросы покупателя.

Что делать, если смартфон не поддерживает беспроводную зарядку

беспроводная зарядка qi для iPhone

Беспроводная зарядка своими руками: инструкция, видео и очень полезный совет

Если не нашли в списке поддерживаемых смартфонов своего устройства, не спешите расстраиваться. Выход есть. Точнее их два. Итак, возможно ваш телефон попал в число тех, для которых специально выпускаются ресиверы (небольшие пластинки со встроенным контуром) для беспроводной зарядки. В этот список входят довольно популярные, но порядком устаревшие модели. Есть и исключения, например iPhone 7.

беспроводная зарядка qi для iPhone

И популярный, и не устаревший, а производитель не интегрировал приемник. Ресиверы, предназначенные для определенных моделей, получают соответствующее обозначение, а также нужные характеристики. К примеру, подобные приемники для Samsung Galaxy S5 или более старых решений имеют необычные контакты, соответствующие тем, что есть под крышкой устройств. Вот самые популярные модели, получившие специальные ресиверы:

  • iPhone: начиная с «четверки».
  • Samsung Galaxy: S3, S4, S5; Note 2, 3, 4, Edge.
  • LG: G4, V10.
  • Sony: Xperia Z3+/Z4; Experia Z5; Experia Z5 Premium.
  • Huawei: Ascend Mate 7, Mate S.

Ресивер к этим устройствам обычно идет в комплекте с док-станцией. Можно покупать детали отдельно – привязки особой нет. Кроме плат (приемников), на рынке есть и специальные чехлы для беспроводной зарядки устройств, которые внутри себя содержат контур из меди. Для каждого смартфона изготавливается соответствующей формы чехол.

Универсальные решения

Устройств, поддерживаемых беспроводную зарядку, становится все больше, но производители не спешат «завозить» технологию в бюджетный сегмент. А он-то наиболее популярен. Особенно дешевые смартфоны любимы в Китае, где придумали выпускать универсальные приемники для любой модели.

Комплект док-станция + ресивер стоит порядка 500-700 рублей (можно найти и дешевле), главное – правильно выбрать для своего смартфона. Обращаем внимание на форму и разъем. Универсальный ресивер можно найти практически для любого смартфона.

Док-станции

Беспроводная зарядка для iPhone

Фото: Беспроводная зарядка для iPhone

Итак, разобрались с поддержкой беспроводной зарядки смартфонами. Теперь хотелось бы остановиться отдельно на платформах, которые используются для передачи энергии устройству. Зачем?

В отличие от ресиверов, которые либо скрыты внутри телефона, либо представляют собой безликую пластинку, док-станции позволяют пользователю выбрать модель себе по душе. Некоторые компании и вовсе предоставляют оригинальные решения, которые станут частью любого интерьера.

Особой популярностью пользуется док-станция для беспроводной зарядки от Samsung, выполненная в овальной форме. Подходит она не только для зарядки смартфонов компании, но и для большинства других моделей.

Из особенностей стоит выделить поддержку автоматического отключения при полном заряде устройства, а также световую индикацию. В среднем стоимость составляет 2000 рублей, но в китайских интернет-магазинах можно найти дешевую реплику за 400-700 рублей.

Woodpuck FAST Edition Bamboo

Интересна и модель площадки Woodpuck FAST Edition Bamboo, которая выполнена из дерева. Производитель, так сказать, совместил современные технологии и природные материалы. По функционалу не отличается от других док-станций, но выглядит броско. Стоимость – 40 долларов.

А вот Aukey QI может похвастаться компактными габаритами, которые позволяют взять зарядку с собой. Да, и цена невысока – 30 долларов. Поклонникам покупок из Китая и вовсе на выбор представлены огромные каталоги, в которых не составит труда подобрать дешевую и красивую док-станцию.

Designo Curve MX34VQ

Фото: Designo Curve MX34VQ

Из необычных подставок для беспроводной зарядки можно выделить новый телевизор от Asus – Designo Curve MX34VQ. Точнее – ножку, на которой он стоит. Выполнена она в виде овальной площадки, на которую и кладется смартфон для зарядки. Имеет даже подсветку. Asus, следуя современным трендам, сделала новое устройство не только красивым, но и полезным. Правда, цена «кусается».

Итог

Можно с уверенностью заявить, что список устройств, поддерживаемых беспроводную зарядку, будет только расти. Технология, способная избавить от кучи проводов, интересна и пользователю, и производителю, который за ее наличие получает дополнительный доход.

Через пару лет беспроводную зарядку наверняка будет поддерживать каждый смартфон. Кроме того, ни один десяток компаний трудится над разработкой еще более совершенной технологии, которая не будет привязана к док-станции. Нам же, простым пользователям, остается немного подождать, чтобы забыть о главной проблеме портативных устройств – привязанности к розетке.

Отзывы

Отзыв №1

Узнав о беспроводной зарядке, заказал из Китая ресивер и док-станцию для своего Meizu M2 Note. Пластинку скрыл чехлом, сигнал проходит отлично. Заряжается довольно быстро, но до обычного ЗУ далековато. Зато теперь не приходится искать по всей квартире провода.

Сергей, Москва

Отзыв №2

Расстроилась, когда узнала, что новенький iPhone 7 Plus, купленный за немалые деньги, не поддерживает беспроводную зарядку. Покопавшись на форумах, нашла недорогой ресивер и площадку, которые, якобы, позволят заряжать смартфон без проводов. Рискнула, заказала – стоимость невысокая. Реально удивилась, когда iPhone начал заряжаться. Теперь и не вспоминаю о стандартной зарядке.

Светлана, СПБ

Отзыв №3

Поддержкой беспроводной зарядки мой старенький Samsung Galaxy S4 не обзавелся, поэтому пришлось заказывать специальную пластинку, ну, и, само собой, док-станцию. Обошлось все в 2000 рублей – брал подороже. Без проблем подключил приемник, установил площадку. Заряжается смартфон, можно сказать, на средней скорости. Думаю заказать еще одну док-станцию для работы.

Николай, Иркутск

Отзыв №4

Мой Samsung Galaxy S6, к счастью, обзавелся поддержкой беспроводной зарядки. Правда, отказался я докупать оригинальную док-станцию, выбрав заранее более интересный вариант. Заказывал из Китая передатчик в виде пирамиды – стоит недорого, выглядит эффектно, работает отлично.

Игорь, Чита

Отзыв №5

Посоветовал знакомый купить для смартфона специальную пластинку и площадку, которые позволяют заряжать девайс без проводов. Комплект обошелся в 2500 рублей – покупала в магазине электроники. Все подошло (телефон Samsung Galaxy S5), работает хорошо. Правда, скорость зарядки все же не дотягивает до той, которую показывает обычное ЗУ. Возможно, это из-за чехла.

Алла, Екатеринбург

  • Как называется липучка на чехол телефона
  • Как называется аккумулятор для зарядки телефона
  • Как называется липучка держатель для телефона
  • Как называется адаптер для зарядки телефона
  • Как называется линза для телефона