Порядковый номер химического элемента
- Порядковый номер химического элемента
-
Заря́довое число́ атомного ядра (синонимы: атомный номер, атомное число, порядковый номер химического элемента) — количество протонов в атомном ядре. Зарядовое число равно заряду ядра в единицах элементарного заряда и одновременно равно порядковому номеру соответствующего ядру химического элемента в таблице Менделеева.
Термин «атомный» или «порядковый» номер обычно используется в атомной физике и химии, тогда как эквивалентный термин «зарядовое число» — в физике ядра. В неионизированном атоме количество электронов в электронных оболочках совпадает с зарядовым числом.
Зарядовое число обычно обозначается буквой Z. Ядра с одинаковым зарядовым числом, но различным массовым числом A (которое равно сумме числа протонов Z и числа нейтронов N) являются различными изотопами одного и того же химического элемента, поскольку именно заряд ядра определяет структуру электронной оболочки атома и, следовательно, его химические свойства.
Wikimedia Foundation.
2010.
Смотреть что такое «Порядковый номер химического элемента» в других словарях:
-
ПОРЯДКОВЫЙ НОМЕР — элемента, то же, что (см. АТОМНЫЙ НОМЕР). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983. ПОРЯДКОВЫЙ НОМЕР … Физическая энциклопедия
-
ПОРЯДКОВЫЙ НОМЕР — химического элемента то же, что атомный номер … Большой Энциклопедический словарь
-
Порядковый номер элемента — Зарядовое число атомного ядра (синонимы: атомный номер, атомное число, порядковый номер химического элемента) количество протонов в атомном ядре. Зарядовое число равно заряду ядра в единицах элементарного заряда и одновременно равно порядковому… … Википедия
-
порядковый номер — химического элемента, то же, что атомный номер. * * * ПОРЯДКОВЫЙ НОМЕР ПОРЯДКОВЫЙ НОМЕР химического элемента, то же, что атомный номер (см. АТОМНЫЙ НОМЕР) … Энциклопедический словарь
-
Атомный номер — порядковый номер химического элемента в периодической системе элементов (См. Периодическая система элементов) Д. И. Менделеева. А. н. равен числу протонов в атомном ядре, которое, в свою очередь, равно числу электронов в электронной… … Большая советская энциклопедия
-
АТОМНЫЙ НОМЕР — АТОМНЫЙ НОМЕР, порядковый номер химического элемента в периодической системе элементов. Равен числу протонов в атомном ядре, определяет химические и большинство физических свойств атома … Современная энциклопедия
-
Атомный номер — АТОМНЫЙ НОМЕР, порядковый номер химического элемента в периодической системе элементов. Равен числу протонов в атомном ядре, определяет химические и большинство физических свойств атома. … Иллюстрированный энциклопедический словарь
-
атомный номер — порядковый номер, Z, номер химического элемента в периодической системе элементов. Равен числу протонов в атомном ядре и определяет химические и большинство физических свойств атома. * * * АТОМНЫЙ НОМЕР АТОМНЫЙ НОМЕР (порядковый номер), Z, номер… … Энциклопедический словарь
-
АТОМНЫЙ НОМЕР — (порядковый номер) Z, номер химического элемента в периодической системе элементов. Равен числу протонов в атомном ядре и определяет химические и большинство физических свойств атома … Большой Энциклопедический словарь
-
Химический элемент — Химический элемент совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева[1]. Каждый химический элемент имеет свои название и символ, которые приводятся в… … Википедия
В ПОМОЩЬ МОЛОДОМУ
УЧИТЕЛЮ
Первоначальные представления
о строении атома и химических
элементах
Цель настоящей статьи – изложение
сложных вопросов общей химии, а именно
первоначальных представлений о строении атомов
химических элементов, в доступной форме. Этот
материал может предварять изучение темы на более
сложном уровне. Такой подход многократно
использовался мной на уроках химии.
Как известно, химия – это наука о веществах.
Разные вещества имеют различное строение. Бывают
вещества атомного строения, они состоят из
атомов. Пример вещества атомного строения –
алмаз. Вещества молекулярного строения
образованы молекулами. Например, вода состоит из
молекул H2O. Любая молекула состоит из
атомов. Известны вещества ионного строения.
Например, поваренная соль NaCl состоит из ионов
натрия и ионов хлора. Ионы – это тоже атомы или
группы атомов, только заряженные. Вот и
получается, какое вещество ни возьми, в основе
его строения лежит атом. Чтобы изучить вещества,
нам вначале следует понять, что такое атом.
Еще 150 лет назад некоторые ученые подвергали
сомнению факт существования атомов. Однако
несколько десятилетий спустя, в конце XIX – начале
XX в., была не только подтверждена реальность
атомов, но и доказано их сложное строение. Было
установлено, что в центре атома находится ядро.
Размеры самого атома во много раз превышают
размеры ядра. Представьте себе футбольное поле с
теннисным мячиком посередине. Если увеличить
атом до размеров футбольного поля, то размеры его
ядра будут сопоставимы с теннисным мячиком.
Атом состоит из элементарных частиц –
протонов, нейтронов и электронов. Элементарными
эти частицы назвали потому, что в отличие от
атома они неделимы. Два вида элементарных частиц
– протоны и нейтроны – образуют ядро. Электроны
образуют электронную оболочку вокруг ядра.
Электроны в отличие от ядер находятся в
постоянном движении. Говоря о движении
электрона, я избегаю употребления слов «вокруг»
и «вращается» и заменяю их словами «около» и
«движется». Если бы я сказала: «Электрон
вращается вокруг ядра», вы могли бы подумать, что
у него (электрона) есть постоянная орбита,
подобно тому как у планет Солнечной системы есть
свои орбиты вокруг Солнца. Кстати, на заре
исследований атома некоторое время ученые так и
думали. Была выдвинута так называемая
«планетарная теория строения атома». Однако
позже было установлено, что движение электрона
гораздо сложнее и что скорость этого движения
очень велика. Именно благодаря быстрому движению
электронов возникает электронное облако.
(Возможно, в детстве вы играли с пуговицей и
ниткой. К середине нитки привязывается пуговица
и много раз один ее конец вращается по часовой
стрелке или против нее, а потом концы нитки
натягиваются и пуговица на большой скорости
начинает двигаться в противоположном
направлении. Возникает иллюзия веретена.
Проделайте с пуговицей и ниткой все, как здесь
описано, наблюдайте веретено, и, может быть, тогда
вы лучше себе представите, что такое электронное
облако.)
В табл. 1 представлены характеристики
элементарных частиц, составляющих атомы.
Таблица 1
Сведения о частицах, составляющих
атомы
Части атома | Элементарные частицы | Условное обозначение | Заряд | Масса |
---|---|---|---|---|
Ядро | Протон | р | +1 | 1 а.е.м. |
Нейтрон | n | 0 | 1 а.е.м. | |
Электронная оболочка | Электрон | е | –1 | Можно пренебречь |
Из табл. 1 видно, что нейтрон –
электронейтральная частица, ее заряд равен нулю,
а протон и электрон – это заряженные частицы.
Заряды протона и электрона одинаковы по
величине, но отличаются по знаку заряда. Как
всякая материальная частица, электрон имеет
массу. Однако эта масса так мала (масса электрона
в 1840 раз меньше массы одного протона или
нейтрона), что ее вкладом в общую массу атома
можно пренебречь. Отсюда следует важный вывод: масса
атома сосредоточена в ядре.
Масса протона почти такая же, как масса
нейтрона, и равна атомной единице массы (а.е.м). За
атомную единицу массы принята 1/12 часть массы
изотопа углерода 12С.
Для выражения массы атомов чаще используют
относительную атомную массу (безразмерная
величина), которая обозначается Ar.
Например, для кислорода и серы: Ar(О) = 16 и Ar(S)
= 32.
В состав атома входят заряженные частицы,
однако атом – это электронейтральная
частица.
Заряд свободного атома или
атомов простого вещества равен нулю.Число
протонов в атоме равно числу электронов.
В природе существуют разновидности атомов,
различающихся размерами, массой и другими
характеристиками. Совокупность атомов одного
вида называется химическим элементом. Можно
сказать по-другому: химический элемент – это вид
атомов. Известно более ста химических элементов.
Чем же отличаются атомы различных химических
элементов? Во-первых, размерами, во-вторых,
массой, в-третьих, строением.
Рассмотрим более подробно строение атомов
различных химических элементов. Возьмите
периодическую систему химических элементов
Д.И.Менделеева и найдите химический элемент
водород.
Атомы водорода имеют самое простое строение.
Ядро состоит всего из одного протона. Заряд ядра
равен +1. Поскольку масса атома сосредоточена в
ядре, его масса равна 1 а.е.м. Атом – это
электронейтральная частица, около ядра
находится один электрон.
Более сложный элемент – гелий. В периодической
системе он числится под номером 2. Найдите этот
элемент и его порядковый номер в таблице
Менделеева (цифру 2). На рисунке показано, как
условно выглядит строение атома гелия. Как видим,
ядро образовано двумя протонами и двумя
нейтронами. Заряд ядра +2. Около ядра в атоме – два
электрона. Массовое число (оно характеризует
массу атома) равно четырем.
Найдите в периодической системе химический
элемент, порядковый номер которого равен трем.
Это – литий. В атоме лития ядро образовано тремя
протонами и четырьмя нейтронами. Заряд ядра
равен +3, около него находятся три электрона,
массовое число равно семи. Внимательно
рассмотрите клетку периодической системы, в
которой расположен литий, и найдите число 6,94.
Если его округлить, то получится 7. Это массовое
число лития.
Запомните, что меньшее из чисел, расположенных
в клетке периодической системы, – это порядковый
номер элемента. Другое число характеризует массу
атома, при округлении его до целых чисел получают
массовое число. Если хотят указать порядковый
номер и массовое число элемента, например гелия,
это делают так: .
А эта запись относится к литию: . Здесь 7 – массовое число, равное
сумме протонов и нейтронов. Число электронов в
атоме равно числу протонов (заряд ядра) и такое
же, как порядковый номер элемента (3).
Следующее положение необходимо хорошо
запомнить:
порядковый номер элемента
указывает на число электронов, число протонов и
заряд ядра атома.
Найдите в периодической системе элемент
серебро. Чему равны его порядковый номер и
массовое число? Оказывается, порядковый номер 47,
а массовое число 108. Какие выводы можно сделать из
этого? Число электронов в атоме серебра 47, число
протонов также 47, заряд ядра +47. Масса атома (масса
ядра) равна 108 а.е.м. Напомним, что ядро образовано
протонами и нейтронами. Чтобы найти число
нейтронов, необходимо из 108 вычесть 47. В атоме
серебра 61 нейтрон.
Если бы все 47 электронов атома серебра
двигались на одинаковом расстоянии от ядра,
«аварий» (столкновений электронов) нельзя было
бы избежать. Чтобы этого не произошло, природа
распорядилась таким образом, что электроны
располагаются на различных расстояниях от ядра.
Так, в атоме лития два электрона находятся ближе
к ядру, а третий – дальше от него. Располагаясь
на различных расстояниях от ядра, электроны
образуют энергетические уровни. Электроны,
находящиеся на различных энергетических
уровнях, обладают различным запасом энергии. Чем
дальше электрон от ядра, тем больше его энергия.
Чтобы легче запомнить это утверждение, приведу
шуточную аналогию. Представьте, что ваши
родители – это ядро, а вы – электрон. Когда ваша
энергия (активность, независимость) больше: когда
вы близко от родителей (например, в одной с ними
квартире) или далеко от них? Конечно же, во втором
случае. Моим ученикам нравится этот пример, и они
легко запоминают сложное утверждение об энергии.
Сколько же электронов может находиться на
различных энергетических уровнях? На ближайшем к
ядру (первом) энергетическом уровне может
находиться не более двух электронов. Вместимость
других электронных слоев показана на схеме.
Схема
В некоторых учебниках вы найдете буквенное
обозначение энергетических уровней:
1-й – уровень К, 2-й – уровень L, 3-й – уровень М, 4-й
– уровень N.
На 2-м энергетическом уровне может находиться 8
электронов. Но что означают цифры 8 (18), 8 (32)?
Установлено, что если 3-й или более дальний
энергетический уровень является внешним, то на
нем может находиться не более восьми электронов.
Если же за 3-м энергетическим уровнем есть другие
энергетические уровни, то на нем может
накапливаться до 18 электронов. Аналогично
обстоит дело с 4-м энергетическим уровнем. Если он
внешний, то может содержать максимально 8
электронов, если же за ним есть другие
энергетические уровни, то на 4-м энергетическом
уровне может накапливаться до 32 электронов.
Важное заключение:
на внешнем энергетическом
уровне не может быть более 8 электронов.
Для нас будет очень важной информация о внешнем
энергетическом уровне, поэтому воспользуемся
сокращением этого словосочетания – ВЭУ.
В дальнейшем, показывая схему атома, мы не будем
обозначать все его протоны и нейтроны, а лишь
укажем в центре заряд его ядра. Заряду ядра атома
мы всегда будем уделять большое внимание, и скоро
вы поймете почему.
Рассмотрим последовательность заполнения
электронами энергетических уровней у атомов
первых 20 элементов периодической системы (табл.
2).
Таблица 2
Название элемента | Порядковый номер | Число электронов на энергетических уровнях | |||
---|---|---|---|---|---|
1-й | 2-й | 3-й | 4-й | ||
Водород | 1 | 1 | c | c | c |
Гелий | 2 | 2 | c | c | c |
Литий | 3 | 2 | 1 | c | c |
Бериллий | 4 | 2 | 2 | c | c |
Бор | 5 | 2 | 3 | c | c |
Углерод | 6 | 2 | 4 | c | c |
Азот | 7 | 2 | 5 | c | c |
Kислород | 8 | 2 | 6 | c | c |
Фтор | 9 | 2 | 7 | c | c |
Неон | 10 | 2 | 8 | c | c |
Натрий | 11 | 2 | 8 | 1 | c |
Магний | 12 | 2 | 8 | 2 | c |
Алюминий | 13 | 2 | 8 | 3 | c |
Kремний | 14 | 2 | 8 | 4 | c |
Фосфор | 15 | 2 | 8 | 5 | c |
Сера | 16 | 2 | 8 | 6 | c |
Хлор | 17 | 2 | 8 | 7 | c |
Аргон | 18 | 2 | 8 | 8 | c |
Kалий | 19 | 2 | 8 | 8 | 1 |
Kальций | 20 | 2 | 8 | 8 | 2 |
Следующий за литием элемент –
бериллий. Его порядковый номер 4, а значит, около
ядра 4 электрона, 2 – на 1-м уровне и 2 – на 2-м. Далее
по мере увеличения порядкового номера идет
накопление электронов на 2-м энергетическом
уровне, и у элемента под номером 10 (неона) на 2-м
(внешнем) энергетическом уровне уже 8 электронов.
Поскольку на внешнем энергетическом уровне не
может быть более 8 электронов, у следующего
элемента с порядковым номером 11 (натрия)
одиннадцатый электрон образует 3-й
энергетический уровень. С увеличением
порядкового номера идет накопление электронов,
но уже на 3-м энергетическом уровне. У аргона, как
и у неона, на ВЭУ максимальное число электронов –
8. Следующий за аргоном элемент – калий.
Размещение электронов на его четырех
энергетических уровнях – 2, 8, 8, 1.
Будем одновременно анализировать табл. 2 и
периодическую систему элементов Д.И.Менделеева.
Обратите внимание, что первые два элемента в
нашей таблице отделены от остальных чертой. Что
объединяет их? И у водорода, и у гелия в атоме
всего лишь один энергетический уровень. В
периодической системе эти элементы расположены
в первой строчке. За гелием следуют 8 элементов:
литий, бериллий, бор, углерод, азот, кислород, фтор
и неон. В табл. 2 эти элементы отделены от других
также чертой. Почему? В атомах этих элементов
электроны распределены по двум энергетическим
уровням. В периодической системе Д.И.Менделеева
элементы от Li по Ne размещены во второй строчке.
Оставшуюся часть табл. 2 проанализируйте сами и
найдите эти элементы в периодической системе.
Напомним, что горизонтальная строчка в
периодической системе элементов Д.И.Менделеева
называется периодом. Такое определение периода
упрощено, и пользоваться им можно лишь на
начальном этапе изучения химии. Обратите
внимание, что четвертый, пятый и шестой периоды
включают в себя не одну, а две строчки (это
большие периоды).
Проанализировав обе таблицы, вы, наверное, сами
смогли сделать вывод:
номер периода указывает на
число энергетических уровней в атоме.
Например, элемент 47Ag (серебро) расположен
в пятом периоде, следовательно, 47 его электронов
распределены на пяти энергетических уровнях.
Обобщим знания и дадим характеристику строения
атомов натрия и калия.
Атом натрия имеет порядковый номер 11,
массовое число 23. Ядро содержит 11 протонов и
12 нейтронов. Заряд ядра +11. Около ядра движется 11
электронов. Натрий находится в третьем периоде,
поэтому 11 его электронов распределены на трех
энергетических уровнях (2е, 8е, 1е).
Атом калия – порядковый номер 19, массовое
число 39. В ядре – 19 протонов и 20 нейтронов. Заряд
ядра +19. Около ядра движется 19 электронов. Калий
находится в четвертом периоде, поэтому 19 его
электронов распределены на четырех
энергетических уровнях (2е, 8е, 8е, 1е).
Сравним распределение электронов в атомах так
называемых сходных элементов, сначала – в атомах
лития, натрия и калия (табл. 3).
Таблица 3
Элемент | Число электронов на энергетических уровнях | |||
---|---|---|---|---|
1-й | 2-й | 3-й | 4-й | |
Литий | 2 | 1 | ||
Натрий | 2 | 8 | 1 | |
Kалий | 2 | 8 | 8 | 1 |
Из табл. 3 видно, что на ВЭУ у атомов этих
элементов по одному электрону. Найдем в
периодической системе элементы литий, натрий,
калий. Все они расположены в первом столбце
периодической системы.
Рассмотрим распределение электронов в атомах
бериллия, магния и кальция (табл. 4).
Таблица 4
Элемент | Число электронов на энергетических уровнях | |||
---|---|---|---|---|
1-й | 2-й | 3-й | 4-й | |
Бериллий | 2 | 2 | ||
Магний | 2 | 8 | 2 | |
Kальций | 2 | 8 | 8 | 2 |
Оказывается, на ВЭУ у атомов этих
элементов по два электрона. В периодической
системе они расположены во втором столбце.
Рассмотрим распределение электронов в атомах
фтора, хлора и брома (табл. 5).
Таблица 5
Элемент | Число электронов на энергетических уровнях | |||
---|---|---|---|---|
1-й | 2-й | 3-й | 4-й | |
Фтор | 2 | 7 | ||
Хлор | 2 | 8 | 7 | |
Бром | 2 | 8 | 18 | 7 |
Из схемы видно, что на ВЭУ у атомов этих
элементов по семь электронов. Они расположены в
седьмом столбце периодической системы.
Вертикальный столбец периодической системы
называется группой. Это определение группы, как и
определение периода, упрощено, и пользоваться им
можно лишь на начальном этапе изучения химии.
Групп в периодической системе – восемь. Как вы
думаете, почему именно восемь, а не семь или
девять? Чтобы ответить на этот вопрос, вспомним,
каково максимальное число электронов на внешнем
энергетическом уровне. Восемь! А теперь очень
важный вывод:
номер группы указывает число
электронов на внешнем энергетическом уровне
атома.
Сколько электронов на ВЭУ у атома серебра?
Чтобы ответить на этот вопрос, уточните
положение серебра в периодической системе.
Серебро находится в первой группе, значит, на
внешнем энергетическом уровне его атомов – один
электрон.
Может быть, кто-то из вас скажет: «Для первых 20
элементов мы знаем распределение электронов в
атоме. А как узнать распределение электронов в
атомах других элементов? Например, как узнать,
что у атома брома на третьем энергетическом
уровне 18 электронов?» На первых порах эту
информацию можно получать из периодической
системы. Найдите в таблице Д.И.Менделеева элемент
№ 35. В его клетке имеется столбик мелких цифр,
если считать снизу, – 2, 8, 18, 7. Значит, на 1-м
энергетическом уровне атома Br – 2e, на 2-м – 8e,
на 3-м – 18e и на 4-м – 7e.
Найдите в периодической системе распределение
электронов в атоме серебра. Как много сведений
можно извлечь из периодической системы! На
экзамене по химии разрешено пользоваться
периодической системой Д.И.Менделеева. Поэтому в
ваших интересах как можно лучше в ней
разобраться. Это не только увлекательно и
интересно, но и может вам пригодиться.
Найдите в периодической системе элементы
гелий, неон, аргон, криптон, ксенон и радон.
Напишите самостоятельно распределение
электронов в атомах этих элементов, а потом
сравните с приведенной ниже табл. 6.
Таблица 6
Элемент | Число электронов на энергетических уровнях | |||||
---|---|---|---|---|---|---|
1-й | 2-й | 3-й | 4-й | 5-й | 6-й | |
Гелий | 2 | |||||
Неон | 2 | 8 | ||||
Аргон | 2 | 8 | 8 | |||
Kриптон | 2 | 8 | 18 | 8 | ||
Kсенон | 2 | 8 | 18 | 18 | 8 | |
Радон | 2 | 8 | 18 | 32 | 18 | 8 |
Из табл. 6 видно, что на ВЭУ у атомов этих
элементов максимальное число электронов – по 8.
Перечисленные элементы объединены в группу
инертных газов. Синонимами слова «инертный»
являются слова «неактивный», «пассивный». И
действительно, атомы этих элементов отличаются
чрезвычайно низкой химической активностью.
Правильней было бы сказать, что они отличаются
особой химической неактивностью. Эти газы при
обычных условиях не взаимодействуют ни с какими
веществами, а при особых условиях
взаимодействуют с очень немногими веществами.
Может быть, поэтому другое их название –
благородные газы.
Т.А.ЖУРАВЛЕВА,
учитель химии гимназии № 272
(Санкт-Петербург)
Химический элемент
Химический элемент — совокупность атомов с одним и тем же зарядом ядра, числом протонов в ядре и электронов
в электронной оболочке. Закономерную связь химических элементов отражает периодическая таблица Д.И. Менделеева.
Изучая подобную карточку химического элемента, можно узнать о нем многое:
- Обозначение химического элемента
- Русское наименование
- Порядковый номер = заряд атома = число электронов = число протонов
- Атомная масса
- Распределение электронов по энергетическим уровням
- Электронная конфигурация внешнего уровня
Надо заметить, что на экзамене часто из карточки элемента скрывают распределение электронов и конфигурацию внешнего
уровня. Тем не менее, если вы успешно освоили предыдущую тему, то для вас не составит труда написать электронную
конфигурацию атома зная его порядковый номер в таблице Д.И. Менделеева (номер уж точно не тронут!))
Протоны, нейтроны и электроны
Вы уже знаете, что порядковый номер элемента в периодической таблице Д.И. Менделеева равен числу протонов, а число протонов
равно числу электронов.
Для того чтобы найти число нейтронов в атоме алюминия, необходимо вычесть из атомной массы число протонов:
27 — 13 = 14
Получается, что в атоме алюминия 14 нейтронов. Посчитайте число нейтронов, электронов и протонов самостоятельно для атомов бериллия,
кислорода, меди. Решение вы найдете ниже.
Если вы поняли суть и научились считать протоны, нейтроны и электроны, самое время приступать к следующей теме.
Изотопы
Изотопы (греч. isos — одинаковый + topos — место) — общее название разновидностей одного и того же химического элемента,
имеющих одинаковый заряд ядра (число протонов), но разное число нейтронов.
Вероятно, вы не задумывались, но вся таблица Д.И. Менделеева и представленные в ней химические элементы — это самые распространенные
на земле изотопы.
Лучше всего объяснить, что такое изотопы наглядным примером. Широко известны три изотопа водорода: протий, дейтерий и тритий.
В таблице Д.И. Менделеева представлен самый распространенный из трех — протий. Он содержит 1 протон и 1 электрон, нейтроны отсутствуют. У
дейтерия 1 протон, 1 нейтрон и 1 электрон. У трития 1 протон, 2 нейтрона, 1 электрон.
Теперь очевидно, что изотопы — атомы одного и того же химического элемента, различающиеся числом нейтронов.
Рассмотрим пример с изотопами лития. Самостоятельно посчитайте количество нейтронов у каждого изотопа. Найдите тот, который
включен в таблицу Д.И. Менделеева.
© Беллевич Юрий Сергеевич 2018-2022
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Порядковые номера элементов
При изложении теории строения атомов мы уже говорили о зависимости между рентгеновыми спектрами элементов и их порядковыми, или атомными, номерами. Изучение этой зависимости привело к выводу, что порядковый номер, определяемый местом элемента в периодической системе, является важнейшей константой элемента, выражающей число положительных зарядов ядра его атома. При помощи рентгеновых спектров были определены величины ядерных зарядов атомов всех элементов. Результаты этих определений показали, что в периодической системе элементы расположены строго последовательно в порядке возрастания зарядов ядер их атомов.
Это открытие давало новое обоснование расположению элементов в периодической системе. Вместе с тем оно устраняло и кажущееся противоречие в системе Менделеева — положение некоторых элементов с большим атомным весом впереди элементов с меньшим атомным весом (теллур и иод, аргон и калий, кобальт и никель). Оказалось, что никакого противоречия здесь нет, так как место элемента в системе определяется не его атомным весом, а зарядом атомного ядра. Определение зарядов ядер теллура и иода показало, что заряд первого равен 52, а второго 53, почему теллур, несмотря на больший атомный вес, и должен стоять впереди иода. Точно так же заряды ядер аргона и калия, никеля и кобальта полностью отвечают последовательности расположения этих элементов в системе.
Итак, заряд атомного ядра является той основной величиной, от которой зависят все свойства элемента и его положение в периодической системе. Поэтому периодический закон Менделеева в настоящее время формулируется следующим образом:
Свойства элементов находятся в периодической зависимости от зарядов ядер их атомов.
Определение порядковых номеров элементов по рентгеновым спектрам последних имело еще и другое очень важное значение. Оно позволило установить общее число мест в периодической системе между водородом, имеющим порядковый номер 1, и ураном (порядковый номер 92), считавшимся в то время последним членом периодической системы элементов. Когда создавалась теория строения атома, из этих мест оставались незанятыми места: 43, 61, 72, 75, 85 и 87, что указывало на возможность существования еще неоткрытых элементов. И действительно, в 1922 г. был открыт новый элемент гафний, который занял 72-е место; затем в 1925 г. — элемент рений, занявший 75-е место. Что же касается элементов, которые должны занять остальные четыре свободных места таблицы, то хотя в литературе и были сообщения об их открытии, однако надежных доказательств существования этих элементов в природе не имеется. Но в последнее время все эти четыре элемента удалось получить искусственным путем и изучить их химические свойства, несмотря на то, что количества полученных элементов не превышали 10-10—10-14 г. Новые элементы получили названия: технеций (№ 43), прометий (№ 61), а с т а т и н (№85) и франций (№ 87). Таким образом, можно считать, что в настоящее время все клетки таблицы периодической системы между водородом и ураном заполнены.
Однако сама периодическая система не является завершенной, о чем свидетельствует открытие так называемых трансурановых (заурановых) элементов, т. е. элементов, следующих за ураном по величине заряда ядра их атомов.
Замена атомных весов ядерными зарядами или порядковыми номерами не только не нарушила систему, но, наоборот, еще больше укрепила ее. В то же время последовательность расположения элементов, установленная Менделеевым, осталась неизмененной как вполне отвечающая новой основе системы — зарядам атомных ядер.
53 54 55
Вы читаете, статья на тему Порядковые номера элементов