Огэ 339438 математика
Задание 16 № 352697
Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 40°. Найдите величину угла KOM. Ответ дайте в градусах.
Угол, образованный хордой и касательной равен половине дуги, которую он заключает, поэтому величина дуги MK равна 2 · 40° = 80°. Угол KOM — центральный, поэтому он равен величине дуги, на которую опирается. Значит, угол KOM равен 80°.
Задание 16 № 352697
Угол, образованный хордой и касательной равен половине дуги, которую он заключает, поэтому величина дуги MK равна 2 40 80.
Oge. sdamgia. ru
20.12.2020 18:49:32
2020-04-28 20:15:17
Источники:
Https://oge. sdamgia. ru/problem? id=352697
OГЭ–2022, математика: задания, ответы, решения. Обучающая система Дмитрия Гущина. » /> » /> .keyword { color: red; } Огэ 339438 математика
Огэ 339438 математика
Огэ 339438 математика
Задание 16 № 339438
Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 83°. Найдите величину угла OMK. Ответ дайте в градусах.
Угол, образованный хордой и касательной равен половине дуги, которую он заключает, поэтому величина дуги MK равна 2 · 83° = 166°. Угол MOK — центральный, поэтому он равен величине дуги, на которую опирается. Значит, угол MOK равен 166°. В треугольнике OMK стороны OK и OM равны как радиусы окружности, поэтому треугольник OMK — равнобедренный, следовательно, углы при основании равны. Сумма углов треугольника равна 180°, поэтому ∠OKM = ∠OMK = (180° − ∠KOM)/2 = (180° − 166°)/2 = 7°.
Приведём другое решение.
Найдём угол OKM: OKM = 90° − 83° = 7°. Треугольник OMK — равнобедренный, поэтому угол OMK равен углу OKM и равен 7°
Задание 16 № 339438
Угол, образованный хордой и касательной равен половине дуги, которую он заключает, поэтому величина дуги MK равна 2 83 166.
Math-oge. sdamgia. ru
18.03.2019 15:18:13
2019-03-18 15:18:13
Источники:
Https://math-oge. sdamgia. ru/problem? id=339438
ОГЭ по математике 2021 — варианты с решениями и ответами » /> » /> .keyword { color: red; } Огэ 339438 математика
ОГЭ по математике
ОГЭ по математике
Основной государственный экзамен по математике 2021 года пройдет в следующие даты:
- досрочный период резервный день досрочного периода Основной период резервные дни
Тренировочные варианты ОГЭ по математике на 2021 год
Пробные варианты ОГЭ по математике с ответами и решениями от Школы Пифагора:
Все варианты ОГЭ по математике представлены в формате pdf — вы легко можете скачать их и распечатать.
Новости
- Результаты итогового сочинения 2021-2022 Итоговое сочинение 2021-2022 года Обновлен проект расписания ЕГЭ в 2021 году Досрочный период ЕГЭ-2021 отменен Итоговое сочинение перенесено на апрель 2021 года Проекты расписаний ЕГЭ и ОГЭ 2021 Осенние каникулы в школах Москвы Порядок приема на обучение по программам высшего образования Направления итогового сочинения 2020-2021 учебного года
Важно знать
Ресурс носит неофициальный информационно-справочный характер, персональные данные не собирает и не обрабатывает, на интеллектуальные права третьих лиц не претендует.
Новости
- Результаты итогового сочинения 2021-2022 Итоговое сочинение 2021-2022 года Обновлен проект расписания ЕГЭ в 2021 году Досрочный период ЕГЭ-2021 отменен Итоговое сочинение перенесено на апрель 2021 года Проекты расписаний ЕГЭ и ОГЭ 2021 Осенние каникулы в школах Москвы Порядок приема на обучение по программам высшего образования Направления итогового сочинения 2020-2021 учебного года
Ресурс носит неофициальный информационно-справочный характер, персональные данные не собирает и не обрабатывает, на интеллектуальные права третьих лиц не претендует.
Осенние каникулы в школах Москвы.
School-mosreg. ru. com
15.03.2020 22:36:02
2020-03-15 22:36:02
Источники:
Https://school-mosreg. ru. com/oge/matematika/
Анализ геометрических высказываний
1. Задание 13 № 67. Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
2. Задание 13 № 93. Укажите номера верных утверждений.
1) Существует квадрат, который не является прямоугольником.
2) Если два угла треугольника равны, то равны и противолежащие им стороны.
3) Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
3. Задание 13 № 119. Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
4. Задание 13 № 145. Укажите номера верных утверждений.
1) Центры вписанной и описанной окружностей равностороннего треугольника совпадают.
2) Существует квадрат, который не является ромбом.
3) Сумма углов любого треугольника равна 180° .
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
5. Задание 13 № 171. Укажите номера верных утверждений.
1) Если угол острый, то смежный с ним угол также является острым.
2) Диагонали квадрата взаимно перпендикулярны.
3) В плоскости все точки, равноудалённые от заданной точки, лежат на одной окружности.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
6. Задание 13 № 197. Укажите номера верных утверждений.
1) Если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то треугольники подобны.
2) Сумма смежных углов равна 180°.
3) Любая высота равнобедренного треугольника является его биссектрисой.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
7. Задание 13 № 169915. Какие из следующих утверждений верны?
1) Если угол равен 45°, то вертикальный с ним угол равен 45°.
2) Любые две прямые имеют ровно одну общую точку.
3) Через любые три точки проходит ровно одна прямая.
4) Если расстояние от точки до прямой меньше 1, то и длина любой наклонной, проведенной из данной точки к прямой, меньше 1.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
8. Задание 13 № 169916. Какие из следующих утверждений верны?
1) Если при пересечении двух прямых третьей прямой соответственные углы равны 65°, то эти две прямые параллельны.
2) Любые две прямые имеют не менее одной общей точки.
3) Через любую точку проходит более одной прямой.
4) Любые три прямые имеют не менее одной общей точки.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
9. Задание 13 № 169917. Какие из следующих утверждений верны?
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы составляют в сумме 90°, то эти две прямые параллельны.
2) Если угол равен 60°, то смежный с ним равен 120°.
3) Если при пересечении двух прямых третьей прямой внутренние односторонние углы равны 70° и 110°, то эти две прямые параллельны.
4) Через любые три точки проходит не более одной прямой.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
10. Задание 13 № 169922. Какие из следующих утверждений верны?
1) Вписанные углы, опирающиеся на одну и ту же хорду окружности, равны.
2) Если радиусы двух окружностей равны 5 и 7, а расстояние между их центрами равно 3, то эти окружности не имеют общих точек.
3) Если радиус окружности равен 3, а расстояние от центра окружности до прямой равно 2, то эти прямая и окружность пересекаются.
4) Если вписанный угол равен 30°, то дуга окружности, на которую опирается этот угол, равна 60°.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
11. Задание 13 № 169923. Какие из следующих утверждений верны?
1) Через любые три точки проходит не более одной окружности.
2) Если расстояние между центрами двух окружностей больше суммы их диаметров, то эти окружности не имеют общих точек.
3) Если радиусы двух окружностей равны 3 и 5, а расстояние между их центрами равно 1, то эти окружности пересекаются.
4) Если дуга окружности составляет 80°, то вписанный угол, опирающийся на эту дугу окружности, равен 40°.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
12. Задание 13 № 169924. Какие из следующих утверждений верны?
1) Сумма углов выпуклого четырехугольника равна 180°.
2) Если один из углов параллелограмма равен 60°, то противоположный ему угол равен 120°.
3) Диагонали квадрата делят его углы пополам.
4) Если в четырехугольнике две противоположные стороны равны, то этот четырехугольник — параллелограмм.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
13. Задание 13 № 169926. Какие из следующих утверждений верны?
1) Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
2) Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.
3) Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.
4) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
14. Задание 13 № 169928. Какие из следующих утверждений верны?
1) Около всякого треугольника можно описать не более одной окружности.
2) В любой треугольник можно вписать не менее одной окружности.
3) Центром окружности, описанной около треугольника, является точка пересечения биссектрис.
4) Центром окружности, вписанной в треугольник, является точка пересечения серединных перпендикуляров к его сторонам.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
15. Задание 13 № 169929. Какие из следующих утверждений верны?
1) Около любого правильного многоугольника можно описать не более одной окружности.
2) Центр окружности, описанной около треугольника со сторонами, равными 3, 4, 5, находится на стороне этого треугольника.
3) Центром окружности, описанной около квадрата, является точка пересечения его диагоналей.
4) Около любого ромба можно описать окружность.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
16. Задание 13 № 169930. Какие из следующих утверждений верны?
1) Окружность имеет бесконечно много центров симметрии.
2) Прямая не имеет осей симметрии.
3) Правильный пятиугольник имеет пять осей симметрии.
4) Квадрат не имеет центра симметрии.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
17. Задание 13 № 169931. Какие из следующих утверждений верны?
1) Правильный шестиугольник имеет шесть осей симметрии.
2) Прямая не имеет осей симметрии.
3) Центром симметрии ромба является точка пересечения его диагоналей.
4) Равнобедренный треугольник имеет три оси симметрии.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
18. Задание 13 № 169932. Какие из следующих утверждений верны?
1) Центром симметрии прямоугольника является точка пересечения диагоналей.
2) Центром симметрии ромба является точка пересечения его диагоналей.
3) Правильный пятиугольник имеет пять осей симметрии.
4) Центром симметрии равнобедренной трапеции является точка пересечения ее диагоналей.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
19. Задание 13 № 169933. Какие из следующих утверждений верны?
1) Если катет и гипотенуза прямоугольного треугольника равны соответственно 6 и 10, то второй катет этого треугольника равен 8.
2) Любые два равнобедренных треугольника подобны.
3) Любые два прямоугольных треугольника подобны.
4) Треугольник ABC, у которого AB = 3, BC = 4, AC = 5, является тупоугольным.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
20. Задание 13 № 169934. Какие из следующих утверждений верны?
1) Любые два прямоугольных треугольника подобны.
2) Если катет и гипотенуза прямоугольного треугольника равны соответственно 6 и 10, то второй катет этого треугольника равен 8.
3) Стороны треугольника пропорциональны косинусам противолежащих углов.
4) Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
21. Задание 13 № 169935. Какие из следующих утверждений верны?
1) Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на синус угла между ними.
2) Если катеты прямоугольного треугольника равны 5 и 12, то его гипотенуза равна 13.
3) Треугольник ABC, у которого AB = 5, BC = 6, AC = 7, является остроугольным.
4) В прямоугольном треугольнике квадрат катета равен разности квадратов гипотенузы и другого катета.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
22. Задание 13 № 169936. Какие из следующих утверждений верны?
1) Если площади фигур равны, то равны и сами фигуры.
2) Площадь трапеции равна произведению суммы оснований на высоту.
3) Если две стороны треугольника равны 4 и 5, а угол между ними равен 30°, то площадь этого треугольника равна 10.
4) Если две смежные стороны параллелограмма равны 4 и 5, а угол между ними равен 30°, то площадь этого параллелограмма равна 10.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
23. Задание 13 № 169938. Какие из следующих утверждений верны?
1) Площадь многоугольника, описанного около окружности, равна произведению его периметра на радиус вписанной окружности.
2) Если диагонали ромба равна 3 и 4, то его площадь равна 6.
3) Площадь трапеции меньше произведения суммы оснований на высоту.
4) Площадь прямоугольного треугольника меньше произведения его катетов.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
24. Задание 13 № 311684. Укажите номера верных утверждений.
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
3) Если в ромбе один из углов равен 90°, то такой ромб — квадрат.
4) Центр описанной около треугольника окружности всегда лежит внутри этого треугольника.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
25. Задание 13 № 311763. Укажите номера верных утверждений.
1) Через любую точку проходит не менее одной прямой.
2) Если при пересечении двух прямых третьей прямой соответственные углы равны 65°, то эти две прямые параллельны.
3) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы составляют в сумме 90°, то эти две прямые параллельны.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
26. Задание 13 № 311851. Укажите номера верных утверждений.
1) Если при пересечении двух прямых третьей прямой соответственные углы равны 37°, то эти две прямые параллельны.
2) Через любые три точки проходит не более одной прямой.
3) Сумма вертикальных углов равна 180°.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
27. Задание 13 № 311915. Укажите номера верных утверждений.
1) Площадь трапеции равна половине высоты, умноженной на разность оснований.
2) Через любые две точки можно провести прямую.
3) Через точку, не лежащую на данной прямой, можно провести единственную прямую, перпендикулярную данной прямой.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
28. Задание 13 № 311959. Укажите номера верных утверждений.
1) В любую равнобедренную трапецию можно вписать окружность.
2) Диагональ параллелограмма делит его углы пополам.
3) Площадь прямоугольного треугольника равна половине произведения его катетов.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
29. Задание 13 № 314814. Какие из данных утверждений верны? Запишите их номера.
1) Вокруг любого треугольника можно описать окружность.
2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
3) Площадь трапеции равна произведению средней линии на высоту.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
30. Задание 13 № 314818. Какие из данных утверждений верны? Запишите их номера.
1) Каждая из биссектрис равнобедренного треугольника является его медианой.
2) Диагонали прямоугольника равны.
3) У любой трапеции боковые стороны равны.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
31. Задание 13 № 314894. Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если в ромбе один из углов равен 90° , то такой ромб — квадрат.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
32. Задание 13 № 316233. Укажите номера верных утверждений.
1) Смежные углы равны.
2) Любые две прямые имеют ровно одну общую точку.
3) Если угол равен 108°, то вертикальный с ним равен 108°.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
33. Задание 13 № 316286. Укажите номера верных утверждений.
1) Если угол равен 47°, то смежный с ним равен 153°.
2) Если две прямые перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Через любую точку проходит ровно одна прямая.
34. Задание 13 № 316323. Укажите номера верных утверждений.
1) Любые три прямые имеют не более одной общей точки.
2) Если угол равен 120°, то смежный с ним равен 120°.
3) Если расстояние от точки до прямой больше 3, то и длина любой наклонной, проведённой из данной точки к прямой, больше 3.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
35. Задание 13 № 316349. Укажите номера неверных утверждений.
1) При пересечении двух параллельных прямых третьей прямой сумма накрест лежащих углов равна 180°.
2) Диагонали ромба перпендикулярны.
3) Центром окружности, описанной около треугольника, является точка пересечения его биссектрис.
Если утверждений несколько, запишите их через точку с запятой в порядке возрастания.
36. Задание 13 № 341332. Какое из следующих утверждений верно?
1) Диагонали параллелограмма равны.
2) Площадь ромба равна произведению его стороны на высоту, проведённую к этой стороне.
3) Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны.
37. Задание 13 № 341358. Какие из следующих утверждений верны?
1) Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.
2) В тупоугольном треугольнике все углы тупые.
3) Средняя линия трапеции равна полусумме её оснований.
38. Задание 13 № 341384. Какие из следующих утверждений верны?
1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
2) Средняя линия трапеции параллельна её основаниям.
3) Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.
39. Задание 13 № 341410. Какое из следующих утверждений верно?
1) Точка пересечения двух окружностей равноудалена от центров этих окружностей.
2) В параллелограмме есть два равных угла.
3) Площадь прямоугольного треугольника равна произведению длин его катетов.
40. Задание 13 № 341499. Какие из следующих утверждений верны?
1) Один из углов треугольника всегда не превышает 60 градусов.
2) Диагонали трапеции пересекаются и делятся точкой пересечения пополам.
3) Все диаметры окружности равны между собой.
41. Задание 13 № 341525. Какие из следующих утверждений верны?
1) Треугольника со сторонами 1, 2, 4 не существует.
2) Сумма углов любого треугольника равна 360 градусам.
3) Серединные перпендикуляры к сторонам треугольника пересекаются в центре его описанной окружности.
42. Задание 13 № 341676. Какие из следующих утверждений верны?
1) Треугольника со сторонами 1, 2, 4 не существует.
2) Смежные углы равны.
3) Все диаметры окружности равны между собой.
В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
43. Задание 13 № 341710. Какое из следующих утверждений верно?
1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой.
2) Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны.
3) Смежные углы равны.
В ответе запишите номер выбранного утверждения.
В 16 задании ОГЭ по математике необходимо решить простую задачу по геометрии. Для успешного решения необходимо обладать базовыми знаниями по геометрии вообще, так как сложно выделить какую-то одну тему, по которой даны задания. Это относится ко всему модулю геометрии. Я рекомендую повторить понятия центральные и вписанные углы, свойства касательных к окружности, взаимосвязь между радиусом описанной или вписанной окружности в геометрические фигуры — в первую очередь прямоугольный треугольник и квадрат.
Теория к заданию №16
Несмотря на то, что в задании №16 могут потребоваться любые знания по геометрии, в данном разделе мы разберем теорию по теме “окружность”.
Начнем рассмотрение с понятия вписанная окружность:
- Центр окружности, вписанной в треугольник, лежит на пересечении биссектрис треугольника.
- Если окружность вписана в произвольный четырехугольник, тогда попарные суммы противолежащих сторон равны между собой: a + b = c + d
Длинна окружности и площадь:
Касательная и секущая:
- Касательная – прямая, имеющая с окружностью одну общую точку.
- Секущая – прямая, имеющая с окружностью две общие точки.
Описанная окружность и её свойства:
- Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его трем сторонам.
- Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы.
- Около трапеции можно описать окружность только тогда, когда трапеция равнобочная.
- Если окружность описана около произвольного четырехугольника, тогда попарные суммы противолежащих углов равны между собой.
Хорда – отрезок, соединяющий две точки окружности.
- Диаметр, делящий хорду пополам, перпендикулярен хорде.
- В окружности равные хорды равноудалены от центра окружности.
- Отрезки пересекающихся хорд связаны равенством:
Центральный и вписанный углы:
Ниже я разобрал три различных примера 10 задания. Если у вас остались пожелания, или вы хотите разобрать задачу, которой здесь нет, напишите об этом в комментарии.
Четырехугольник ABCD вписан в окружность. Угол ABC равен 92°, угол CAD равен 60°. Найдите угол ABD. Ответ дайте в градусах.
Внимательно посмотрим на рисунок. Угол ABC опирается на дугу ADC, а угол CAD – на дугу DC. Угол, который нам необходимо найти – ABD, опирается на дугу AD – которая является частью дуги ADC за вычетом дуги DC. Значит, угол ABD равен разности углов ABC и CAD:
∠ABD = 92 – 60 = 32
Ответ: 32
pазбирался: Даниил Романович | обсудить разбор | оценить
Касательные в точках A и B к окружности с центром O пересекаются под углом 2º. Найдите угол ABO. Ответ дайте в градусах.
Во-первых, касательные равны между собой по длине, а значит треугольник с основанием AB равнобедренный. Угол при вершине этого треугольника равен 2 градуса по условию, значит углы при основании равны:
(180 – 2) / 2 = 89°
Во-вторых, касательные перпендикулярны радиусу, то есть угол между ними и радиусом равен 90 градусов.
Заметим, что угол ABO, который необходимо найти, является частью угла между касательной и радиусом, а именно за вычетом угла, который мы нашли в первом пункте. Значит, этот угол равен:
90 – 89 = 1°
Ответ: 1
pазбирался: Даниил Романович | обсудить разбор | оценить
В треугольнике ABC известно, что AC = 16, BC = 12, угол C равен 90º. Найдите радиус описанной около этого треугольника окружности.
Для решения необходимо вспомнить, что центр описанной около прямоугольного треугольника окружности расположен в середине гипотенузы. То есть гипотенуза является диаметром, а её половина – радиусом.
По теореме Пифагора найдем гипотенузу AB:
AB² = BC² + AC² = 12² + 16² = 144 + 256 = 400
AB = √400 = 20
Гипотенуза равна 20, значит радиус – 10.
Ответ: 10
pазбирался: Даниил Романович | обсудить разбор | оценить
Найдите длину хорды окружности радиусом 13 см, если расстояние от центра окружности до хорды равно 5 см. Ответ дайте в см.
Для решения данной задачи необходимо провести радиус окружности к точке начала хорды:
Получаем прямоугольный треугольник, где гипотенуза c – радиус и равна 13 см, b – расстояние до хорды – 5 см. По теореме Пифагора находим катет a:
a² + b² = c²
a² = c² – b² = 13² – 5² = 169 – 25 = 144
Откуда
а = √144 = 12
Но а – лишь половина хорды, поэтому вся хорда равна 2 • а = 24Ответ: 24
pазбирался: Даниил Романович | обсудить разбор | оценить
Центр окружности, описанной около треугольника АВС, лежит на стороне АВ. Радиус окружности равен 10. Найдите ВС, если АС=16.
Сторона АВ треуг-ка АСВ является диаметром окружности. Это означает, что угол АСВ опирается на диаметр. Тогда угол АСВ равен 900, и, следовательно, ∆АСВ прямоугольный.
Если ∆АСВ прямоугольный, то для нахождения одной из его сторон можно применить т.Пифагора. По т.Пифагора
АС2+ВС2=АВ2 (1)
По условию АС=16, радиус окружности R=10. Если R=10, то АВ=2R=2·10=20.
Тогда из (1) получим:
Ответ: 12
pазбирался: Даниил Романович | обсудить разбор | оценить
Треугольник АВС вписан в окружность с центром в точке О. Найдите угол АСВ, если угол АОВ равен 1130. Ответ дайте в градусах.
Поскольку вершина О угла АОВ лежит в центре окружности, значит, этот угол центральный. А если так, то он равен величине дуги АВ. Т.е. ᴗАВ=1130.
Угол АСВ является вписанным. Следовательно, его величина равна половине дуги, на которую он опирается. Из рисунка видно, что оба угла (АОВ и АСВ) опираются на одну и ту же дугу. Т.к. ᴗАВ=1130, то угол АСВ равен
0,5 · ᴗАВ = 0,5 · 1130 = 56,50.
Ответ: 56,5
pазбирался: Даниил Романович | обсудить разбор | оценить
Радиус вписанной в квадрат окружности равен 22√2. Найти диагональ этого квадрата.
Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.
Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22√2, то сторона квадрата будет в два раза больше, т.е. 44√2.
Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44√2. Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а√2, где с – гипотенуза, а – катет. Подставим в неё наши данные:
с=44√2×√2=44√4=44×2=88
Ответ: 88
pазбирался: Даниил Романович | обсудить разбор | оценить
Решение.
Угол, образованный хордой и касательной равен половине дуги, которую он заключает, поэтому величина дуги MK равна 2 · 83° = 166°. Угол MOK — центральный, поэтому он равен величине дуги, на которую опирается. Значит, угол MOK равен 166°. В треугольнике OMK стороны OK и OM равны как радиусы окружности, поэтому треугольник OMK — равнобедренный, следовательно, углы при основании равны. Сумма углов треугольника равна 180°, поэтому ∠OKM = ∠OMK = (180° − ∠KOM)/2 = (180° − 166°)/2 = 7°.
Ответ: 7.
Приведём другое решение.
Найдём угол OKM: OKM = 90° − 83° = 7°. Треугольник OMK — равнобедренный, поэтому угол OMK равен углу OKM и равен 7°
Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 83°. Найдите величину угла OMK. Ответ дайте в градусах.
О категории
Геометрия
Практика (12)
Используя данные, указанные на рисунке, найдите катет CD.
Найдите угол между стороной квадрата и его диагональю.
В равностороннем треугольнике АВС найдите величину острого угла между его высотами.
Медиана равностороннего треугольника равна 12sqrt(3). Найдите его сторону.
Сторона равностороннего треугольника равна 14sqrt(3). Найдите его биссектрису.
В равнобедренном треугольнике АВС с основанием АС биссектриса CF внешнего угла ВСК составляет с лучом СЕ, перпендикулярным к АК, угол 25° (см. рис. 152). Найдите градусную меру угла ВАС.
На рисунке 113 ∠BAD=∠ACD=30° , ∠ABE=∠ADC. Найдите величину ∠BEF в градусах.
В прямоугольном треугольнике АВС гипотенуза АВ = 17 (см. рис. 58), АС = 15. Найдите тангенс угла В.
Диагональ BD ромба равна 11 см, а острый угол равен 60 градусов. Найдите периметр ромба в сантиметрах
В треугольнике ABC проведена биссектриса AL, угол ALC равен 112°, угол ABC равен 106°. Найдите угол ACB. Ответ дайте в градусах.
В треугольнике ABC известно, что AC=BC. Внешний угол при вершине B равен 146°. Найдите угол C. Ответ дайте в градусах.
В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123 градуса. Найдите величину угла ВАС. Ответ дайте в градусах
Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 83°. Найдите величину угла OMK. Ответ дайте в градусах.
Практические задачи с ответами для задания №16 ОГЭ 2022 по математике для 9 класса, центральный и вписанный угол, касательная, хорда, секущая, радиус, окружность, описанная вокруг многоугольника решу ОГЭ онлайн на сайте.
Скачать задание 16 с ответами
Задание 16 ОГЭ 2022 математика 9 класс с ответами окружность:
1)Треугольник ABC вписан в окружность с центром в точке O. Точки O и C лежат в одной полуплоскости относительно прямой AB. Найдите угол ACB, если угол AOB равен 39°. Ответ дайте в градусах.
Ответ: 19,5
2)Треугольник ABC вписан в окружность с центром в точке O. Точки O и C лежат в одной полуплоскости относительно прямой AB. Найдите угол ACB, если угол AOB равен 64°. Ответ дайте в градусах.
Ответ: 32
3)Отрезки AC и BD – диаметры окружности с центром O. Угол ACB равен 25°. Найдите угол AOD. Ответ дайте в градусах.
Ответ: 130
4)Отрезки AC и BD – диаметры окружности с центром О. Угол ACB равен 28°. Найдите угол AOD. Ответ дайте в градусах.
Ответ: 124
5)В окружности с центром O AC и BD – диаметры. Центральный угол AOD равен 40°. Найдите вписанный угол ACB. Ответ дайте в градусах.
Ответ: 70
6)В окружности с центром O AC и BD – диаметры. Центральный угол AOD равен 38°. Найдите вписанный угол ACB. Ответ дайте в градусах.
Ответ: 71
7)На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что NBA = 36°. Найдите угол NMB. Ответ дайте в градусах.
Ответ: 54
8)На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что NBA = 42°. Найдите угол NMB. Ответ дайте в градусах.
Ответ: 48
9)Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ABC = 56° и OAB = 15°. Найдите угол BCO. Ответ дайте в градусах.
Ответ: 41
10)Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ABC = 62° и OAB = 53°. Найдите угол BCO. Ответ дайте в градусах.
Ответ: 9
11)Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB = BC и ABC = 76°. Найдите величину угла BOC. Ответ дайте в градусах.
Ответ: 104
12)Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB = BC и ABC = 57°. Найдите величину угла BOC. Ответ дайте в градусах.
Ответ: 123
13)Четырёхугольник ABCD вписан в окружность. Угол ABC равен 100°, угол CAD равен 31°. Найдите угол ABD. Ответ дайте в градусах.
Ответ: 69
14)Четырёхугольник ABCD вписан в окружность. Угол ABC равен 105°, угол CAD равен 29°. Найдите угол ABD. Ответ дайте в градусах.
Ответ: 76
15)Четырёхугольник ABCD вписан в окружность. Угол ABD равен 10°, угол CAD равен 62°. Найдите угол ABC. Ответ дайте в градусах.
Ответ: 72
16)Четырёхугольник ABCD вписан в окружность. Угол ABD равен 12°, угол CAD равен 71°. Найдите угол ABC. Ответ дайте в градусах.
Ответ: 83
17)На окружности с центром O отмечены точки A и B так, что AOB = 45°. Длина меньшей дуги AB равна 10. Найдите длину большей дуги
Ответ: 70
18)На окружности с центром O отмечены точки A и B так, что AOB = 30°. Длина меньшей дуги AB равна 12. Найдите длину большей дуги.
Ответ: 132
19)Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Найдите угол ABC, если угол BAC равен 25°. Ответ дайте в градусах.
Ответ: 65
20)Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Найдите угол ABC, если угол BAC равен 27°. Ответ дайте в градусах.
Ответ: 63
21)Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 2,5. Найдите AC, если BC = 3.
Ответ: 4
22)Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 12,5. Найдите AC, если BC = 7.
Ответ: 24
23)Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 15. Найдите BC, если AC = 24.
Ответ: 18
24)Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 20,5. Найдите BC, если AC = 9.
Ответ: 40
25)Точка О – центр окружности, ACB = 75°. Найдите величину угла BOA (в градусах).
Ответ: 150
26)Точка О – центр окружности, ACB = 60°. Найдите величину угла BOA (в градусах).
Ответ: 120
27)Центральный угол AOB опирается на хорду AB длиной 11. При этом угол OAB равен 60°. Найдите радиус окружности.
Ответ: 11
28)Центральный угол AOB опирается на хорду AB длиной 17. При этом угол OAB равен 60°. Найдите радиус окружности.
Ответ: 17
29)Точка O – центр окружности, на которой лежат точки A, B и C таким образом, что OABC – ромб. Найдите угол OAB. Ответ дайте в градусах.
Ответ: 60
30)Точка O – центр окружности, на которой лежат точки A, B и C таким образом, что OABC – ромб. Найдите угол ABC. Ответ дайте в градусах.
Ответ: 120
31)Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ABC = 109° и OAB = 48°. Найдите угол BCO. Ответ дайте в градусах.
Ответ: 61
32)Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ABC = 131° и OAB = 53°. Найдите угол BCO. Ответ дайте в градусах.
Ответ: 78
33)В угол C величиной 80° вписана окружность, которая касается сторон угла в точках A и B, точка O – центр окружности. Найдите угол AOB. Ответ дайте в градусах.
Ответ: 100
34)В угол C величиной 73° вписана окружность, которая касается сторон угла в точках A и B, точка O – центр окружности. Найдите угол AOB. Ответ дайте в градусах.
Ответ: 107
35)Касательные в точках A и B к окружности с центром O пересекаются под углом 60°. Найдите угол ABO. Ответ дайте в градусах.
Ответ: 30
36)Касательные в точках A и B к окружности с центром O пересекаются под углом 54°. Найдите угол ABO. Ответ дайте в градусах.
Ответ: 27
37)Хорды AC и BD окружности пересекаются в точке P, BP = 30, CP = 12, DP = 20 . Найдите AP.
Ответ: 50
38)Хорды AC и BD окружности пересекаются в точке P, BP = 4, CP = 12, DP = 24. Найдите AP.
Ответ: 6
39)На окружности отмечены точки A и B так, что меньшая дуга AB равна 142°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Ответ: 71
40)На окружности отмечены точки A и B так, что меньшая дуга AB равна 96°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Ответ: 48
41)Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB = 3, AC = 12. Найдите AK.
Ответ: 6
42)Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB = 3, AC = 27. Найдите AK.
Ответ: 9
43)Найдите угол АСО, если его сторона СА касается окружности, О – центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна 125°.
Ответ: 35
44)Найдите угол АСО, если его сторона СА касается окружности, О – центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна 135°.
Ответ: 45
45)Отрезок AB = 8 касается окружности радиуса 6 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.
Ответ: 4
46)Отрезок AB = 24 касается окружности радиуса 7 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.
Ответ: 18
47)К окружности с центром в точке О проведены касательная AB и секущая AO. Найдите радиус окружности, если AB = 15, AO = 17.
Ответ: 8
48)К окружности с центром в точке О проведены касательная AB и секущая AO. Найдите радиус окружности, если AB = 8, AO = 10.
Ответ: 6
49)На отрезке AB выбрана точка C так, что AC = 7 и BC = 18. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.
Ответ: 24
50)На отрезке AB выбрана точка C так, что AC = 12 и BC = 8. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведѐнной из точки B к этой окружности.
Ответ: 16
51)Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 64°. Найдите величину угла OMK. Ответ дайте в градусах.
Ответ: 26
52)Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 72°. Найдите величину угла OMK. Ответ дайте в градусах.
Ответ: 18
53)Длина хорды окружности равна 24, а расстояние от центра окружности до этой хорды равно 9. Найдите диаметр окружности
Ответ: 30
54)Длина хорды окружности равна 24, а расстояние от центра окружности до этой хорды равно 35. Найдите диаметр окружности.
Ответ: 74
55)Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен 60°, а радиус окружности равен 10.
Ответ: 20
56)Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 5.
Ответ: 2,5
57)Радиус круга равен 3. Найдите его площадь, деленную на π.
Ответ: 9
58)Радиус круга равен 5. Найдите его площадь, деленную на π.
Ответ: 25
59)Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3 : 4 : 11. Найдите радиус окружности, если меньшая из сторон равна 16.
Ответ: 16
60)Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3 : 7 : 8. Найдите радиус окружности, если меньшая из сторон равна 25.
Ответ: 25
61)В треугольнике ABC известно, что AC = 24, BC = 10, угол C равен 90°. Найдите радиус описанной окружности этого треугольника
Ответ: 13
62)В треугольнике ABC известно, что AC = 4, BC = 3, угол C равен 90°. Найдите радиус описанной окружности этого треугольника.
Ответ: 2,5
63)Сторона AC треугольника ABC проходит через центр описанной около него окружности. Найдите C, если A = 64°. Ответ дайте в градусах.
Ответ: 26
64)Сторона AC треугольника ABC проходит через центр описанной около него окружности. Найдите C, если A = 59°. Ответ дайте в градусах.
Ответ: 31
65)Радиус окружности с центром в точке O равен 65, длина хорды AB равна 126. Найдите расстояние от хорды AB до параллельной ей касательной k, если k и AB расположены по разные стороны от центра окружности.
Ответ: 81
66)Радиус окружности с центром в точке O равен 82, длина хорды AB равна 36. Найдите расстояние от хорды AB до параллельной ей касательной k, если k и AB расположены по разные стороны от центра окружности.
Ответ: 162
67)Боковая сторона равнобедренного треугольника равна 4. Угол при вершине, противолежащий основанию, равен 120°. Найдите диаметр окружности, описанной около этого треугольника.
Ответ: 8
68)Боковая сторона равнобедренного треугольника равна 5. Угол при вершине, противолежащий основанию, равен 120°. Найдите диаметр окружности, описанной около этого треугольника.
Ответ: 10
69)Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB = BC и ∠ABC = 177°. Найдите величину угла BOC. Ответ дайте в градусах.
Ответ: 3
70)Окружность с центром в точке О описана около равнобедренного треугольника АВС, в котором АВ = ВС и ∠ABC = 107°. Найдите величину угла ВОС. Ответ дайте в градусах
Ответ: 73
71)Найдите площадь квадрата, описанного вокруг окружности радиуса 6.
Ответ: 144
72)Найдите площадь квадрата, описанного вокруг окружности радиуса 4.
Ответ: 64
Смотрите также на нашем сайте:
Задание 15 ОГЭ 2022 математика 9 класс с ответами
Прогрессии задание 14 ОГЭ 2022 математика 9 класс с ответами
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
Задание 1 № 366805
Для объектов, указанных в таблице, определите, какими цифрами они обозначены на рисунке. Заполните таблицу, в ответ запишите последовательность четырёх цифр.
Объекты | Город Гранюк | Деревня Астрелка | Хутор Южный | Город Гусевск |
Цифры |
Андрей и его друзья собираются поехать в отпуск на две недели. Предварительно они наметили маршрут, представленный на рисунке. Они планируют на велосипедах добраться от города Гранюк до кемпинга, обозначенного на рисунке цифрой 7, за 4 дня, а потом поставить там палатки и отдыхать в море. Друзья собираются выехать рано утром и в первый день добраться до хутора Южный, где живёт бабушка Андрея. Там есть озеро, в котором можно купаться и ловить рыбу, что они и собираются делать до обеда следующего дня. Потом планируется доехать до посёлка Быково и заночевать там в мини‐отеле. На следующий день они собираются проехать 24 км до города Гусевск вдоль степного заказника и переночевать в одной из гостиниц. Заказник обозначен на рисунке цифрой 8. Из Гусевска в посёлок Домарку, где расположен кемпинг, можно доехать напрямую или через деревню Астрелка. Прямой путь короче, но там в эти дни идёт ремонт дороги, и пока неизвестно, где можно будет проехать быстрее.
Решение.
Андрей и его друзья собираются начинать движение из города Гранюк, следовательно, он отмечен на рисунке цифрой 1. Рядом с хутором Южный расположено озеро. Значит, хутор Южный отмечен на рисунке цифрой 6. После хутора Южный планируется поехать до посёлка Быково, а потом проехать до города Гусевска вдоль степного заказника. Значит, город Гусевск обозначен на рисунке цифрой 5. Из Гусевска в посёлок Домарку, где расположен кемпинг, можно доехать напрямую или через деревню Астрелка. Значит, деревня Астрелка обозначена на рисунке цифрой 4.
Ответ: 1465.
2. Задание 2 № 366806
Ребята решили, что нужно взять в поездку чай в пакетиках определённого сорта. Оксане поручили купить чай на всех. Сколько пачек чая должна купить Оксана, если в компании 8 человек, в день они выпивают в среднем 3 пакетика на одного человека и поездка продлится две недели? В каждой пачке 25 пакетиков чая.
Решение.
Найдём, сколько пакетиков чая ребята потратят за две недели:
Значит, им понадобится
пачек чая.
Таким образом, ребята должны купить 14 пачек чая.
Ответ: 14.
3. Задание 3 № 366807
Найдите площадь (в км2), которую занимает заказник.
Решение.
Площадь заказника равна:
Ответ: 351.
4. Задание 4 № 366808
Все могут пойти в отпуск с 15 июля, кроме Григория и Марии, которым в этот день нужно работать. Они готовы выехать 16 июля и догнать остальную группу в посёлке Быково, не заезжая на хутор Южный. Найдите расстояние, которое проедут Григорий и Мария от города Гранюк до Быково. Ответ дайте в километрах.
Решение.
Найдём расстояние, которое проедут Григорий и Мария от города Гранюк до Быково, по теореме Пифагора:
км.
Ответ: 30.
5. Задание 5 № 366809
Андрей выяснил, что его велосипед пришёл в нерабочее состояние. Андрей посетил сайты интернет‐магизина «ОК» и магазина «Вело», расположенного в соседнем доме, чтобы узнать некоторые цены. В этих магазинах можно купить готовый велосипед либо запасные части. Цены на продукцию магазинов и срок доставки из интернет‐магазина даны в таблице.
Продукция | Цена в магазине «Вело» (руб.) | Цена в магазине «ОК» (руб.) | Срок доставки из магазина «ОК» (дни) |
Подсветка для спиц | |||
Шина вида «А» | |||
Шина вида «Б» | |||
Спица | |||
Педаль вида «А» | |||
Педаль вида «Б» | |||
Тормоз вида «А» | нет | ||
Тормоз вида «Б» | нет | ||
Набор крепёжных изделий |
Андрея не устраивает срок доставки деталей из интернет‐магазина, и он решил приобрести детали в магазине «Вело». Он готов потратить на ремонт не более 6000 рублей и при этом хочет купить самый дорогой набор для ремонта велосипеда, который может себе позволить. Ему нужно купить 5 спиц, 2 шины (одного вида), 2 педали (одного вида), тормоз (любого вида) и набор крепёжных изделий. Сколько рублей Андрей потратит на набор запасных частей?
Решение.
На спицы Андрей потратит 70 · 5 = 350 руб. Далее, Андрей должен купить две шины вида «А», поскольку если он купит две шины вида «Б», ему не хватит денег на остальные запчасти. Значит, на шины он потратит 680 · 2 = 1360 руб. Поскольку Андрей хочет купить самый дорогой набор для ремонта велосипеда, из двух видов педалей он может купить педали вида «Б», они будут стоить 860 · 2 = 1720 руб. Ему останется купить тормоз и набор крепёжных изделий. Таким образом, всего Андрей потратит:
руб.
Ответ: 5300.
6. Задание 6 № 316314
Найдите значение выражения:
Решение.
Для упрощения вычислений, вынесем общий множитель за скобки:
Ответ: 4,4.
7. Задание 7 № 317575
На координатной прямой отмечены числа a и b.
В ответе укажите номер правильного варианта.
Какое из приведенных утверждений неверно?
1)
2)
3)
4)
Решение.
Заметим, что и Проверим все варианты ответа:
1) — неверно;
2) — верно;
3) — верно;
4) — верно.
Ответ указан под номером 1.
8. Задание 8 № 353586
Какое из данных ниже чисел является значением выражения
1)
2)
3)
4)
Решение.
Последовательно получим:
Ответ: 1
9. Задание 9 № 338500
При каком значении значения выражений и равны?
Решение.
Для ответа на вопрос задачи нужно решить уравнение Решим его:
Ответ: 2.
10. Задание 10 № 325450
В соревнованиях по художественной гимнастике участвуют три гимнастки из России, три гимнастки из Украины и четыре гимнастки из Белоруссии. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что первой будет выступать гимнастка из России.
Решение.
Всего в соревнованиях участвуют 3 + 3 + 4 = 10 гимнасток. Поэтому вероятность того, что первой будет будет выступать гимнастка из России равна
Ответ: 0,3.
11. Задание 11 № 311406
На рисунке изображён график функции . Какие из утверждений относительно этой функции неверны? Укажите их номера.
1) функция возрастает на промежутке
2)
3)
4) прямая пересекает график в точках и
Решение.
Проверим каждое из утверждений.
1) Функция возрастает на промежутке — неверно, функция убывает на промежутке и затем возрастает на .
2) — неверно,
3) — верно, видно из графика.
4) Прямая пересекает график в точках и — верно, видно из графика.
Таким образом, неверные утверждения находятся под номерами 1 и 2.
Ответ: 12.
12. Задание 12 № 311543
Площадь любого выпуклого четырехугольника можно вычислять по формуле , где — длины его диагоналей, а угол между ними. Вычислите , если .
Решение.
Выразим :
Подставляя, получаем:
Ответ: 0,4.
13. Задание 13 № 338497
На каком из рисунков изображено решение неравенства
В ответе укажите номер правильного варианта.
1) 1
2) 2
3) 3
4) 4
Решение.
Решим неравенство методом интервалов:
Правильный ответ указан под номером: 4.
14. Задание 14 № 406645
В амфитеатре 13 рядов. В первом ряду 17 мест, а в каждом следующем на 2 места больше, чем в предыдущем. Сколько всего мест в амфитеатре?
Решение.
Количества мест в рядах представляют собой арифметическую прогрессию с первым членом 17.
Найдем сумму этой прогрессии:
Ответ: 377 мест.
15. Задание 15 № 340000
В прямоугольном треугольнике катет , а высота , опущенная на гипотенузу, равна Найдите
Решение.
Из прямоугольного треугольника по теореме Пифагора найдём
Углы и равны как углы с взаимно перпендикулярными сторонами, поэтому их синусы равны:
Ответ: 0,2.
16. Задание 16 № 351463
На окружности с центром O отмечены точки A и B так, что Длина меньшей дуги AB равна 33. Найдите длину большей дуги.
Решение.
Пусть длина большей дуги равна Длина дуги прямо пропорциональна её градусной мере, поэтому имеет место отношение:
Ответ: 2343.
17. Задание 17 № 169876
Одна из сторон параллелограмма равна 12, другая равна 5, а один из углов — 45°. Найдите площадь параллелограмма, делённую на .
Решение.
Площадь параллелограмма равна произведению сторон на синус угла между ними:
Ответ: 30.
———-
В открытом банке иррациональный ответ.
18. Задание 18 № 350842
Найдите угол
Решение.
Искомый угол опирается на часть окружности: . Так как угол является вписанный, он равен половине дуги, на которую опирается, т.е.
Ответ: 22,5
19. Задание 19 № 401617
Какие из следующих утверждений верны?
1) Существуют три прямые, которые проходят через одну точку.
2) Боковые стороны любой трапеции равны.
3) Сумма углов равнобедренного треугольника равна 180 градусам.
Если утверждений несколько, запишите их номера в порядке возрастания.
Решение.
Проверим каждое из утверждений.
1) «Существуют три прямые, которые проходят через одну точку» — верно, так как через одну точку на плоскости можно провести бесконечное количество прямых.
2) «Боковые стороны любой трапеции равны» — неверно, боковые стороны равнобедренной трапеции равны.
3) «Сумма углов равнобедренного треугольника равна 180 градусам» — верно, сумма углов любого треугольника равна 180 градусам.
Ответ: 13.
20. Задание 20 № 338505
Решите неравенство
Решение.
Решим неравенство методом интервалов, для этого, сначала разложим на множители выражение
Теперь расставим точки на прямой и определим знаки выражения на каждом получившемся промежутке (см. рис.).
Таким образом, ответ
Ответ:
Примечание.
Обратите внимание, что при определении знаков выражения используется исходное выражение, а именно,
21. Задание 21 № 353527
Смешали некоторое количество 21-процентного раствора некоторого вещества с таким же количеством 95-процентного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?
Решение.
Пусть взяли г 21-процентного раствора, тогда взяли и г 95-процентного раствора. Концентрация раствора — масса вещества, разделённая на массу всего раствора. В первом растворе содержится г, а во втором — г Концентрация получившегося раствора равна или 58%.
Ответ: 58.
22. Задание 22 № 338288
Постройте график функции И определите, при каких значениях прямая имеет с графиком ровно одну общую точку.
Решение.
Упростим выражение:
По теореме, обратной теореме Виета, корни уравнения равны -1 и -2 соответственно, тогда по формуле , получаем: . Имеем:
График функции сводится к графику параболы с выколотой точкой
Выделим полный квадрат:
Следовательно, график функции получается из графика функции сдвигом на . (см. рис.)
Из графика видно, что прямая имеет с графиком функции ровно одну общую точку при и
Ответ: −1; 3.
23. Задание 23 № 339395
Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH = 16.
Решение.
Угол — вписанный, он равен 90° и опирается на дугу следовательно, дуга равна 180°, значит, хорда — диаметр окружности и
Ответ: 16.
24. Задание 24 № 155
В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём АЕ = CK, BF = DM. Докажите, что EFKM — параллелограмм.
Решение.
Так как в параллелограмме противоположные стороны равны и по условию известно, что АЕ = CK, BF = DM, то BЕ = KD, CF = AM. В параллелограмме противоположные углы равны, поэтому треугольники EBF и KDM, FCK и MAE равны по двум сторонам и углу между ними. Из равенства треугольников следует, что EF=MK, EM=FK. Так как противоположные стороны четырехугольника EFKM равны, то по признаку параллелограмма этот четырехугольник — параллелограмм.
25. Задание 25 № 311926
В равнобедренной трапеции ABCD боковые стороны равны меньшему основанию BC. К диагоналям трапеции провели перпендикуляры BH и CE. Найдите площадь четырёхугольника BCEH, если площадь трапеции ABCD равна 36 .
Решение.
По свойству равнобедренной трапеции следовательно, треугольники и равны. Так как = треугольники и равнобедренные, следовательно, и — соответствующие медианы этих треугольников. Значит, Отрезок соединяет середины диагоналей трапеции, следовательно, и прямые и параллельны, поэтому, — трапеция. Проведём — высоту трапеции и — высоту трапеции . Прямоугольные треугольники и подобны, значит,
Площадь трапеции :
Площадь трапеции
Ответ: 9.